
 1 / 30

40 Years Since Dusk:

Will Hardware Capabilities
Finally Make Our Systems

More Capable?

Lluís Vilanova
(Technion)

vilanova@technion.ac.il

mailto:vilanova@technion.ac.il

 2 / 30

Why Hardware Capabilities
Are a Good Idea for Security

and Performance

Lluís Vilanova
(Technion)

vilanova@technion.ac.il

mailto:vilanova@technion.ac.il

 3 / 30

Outline

● Brief history of memory virtualization and protection
– Memory paging
– Memory segmentation

● Classic hardware capability systems
● Recent hardware capability systems
● Some ideas for the future

 4 / 30

Origins of Memory Virtualization
and Protection

● Virtualization → programmability & efficiency
– Automate swapping between memory & disk

● Growing program sizes
● Complex to do manually

– Share code and data across processes
● Fight memory scarcity

● Protection → security
– Multiprogramming

● Run other programs during I/O wait times

 5 / 30

Why Do We Want Capabilities?

● Coined by Dennis and Van Horn [CACM’66]

– A communicable and unforgeable token that at
the same time authorizes and identifies the
destination of an operation

● Think of «fat pointers» with permission bits

– Fine-grained memory protection
– Fine-grained, user-defined isolation domains

● Safely managed by user: «diminish» rights
– E.g., forbid writes, or make range smaller

● Enforced by HW: tamper-proof structures

Base address | Size | {Read,Write,Call,...}

 6 / 30

● University of Manchester (1956-1962)
● One-level storage system (demand paging)

– Transparently move fix-sized data blocks (pages)
between memory and disk on-demand

Source: University of Manchester

Virtual Memory Paging:
The Atlas Computer

Memory

Disk

Application 1

Application 2

T

ra
ns

la
tio

n
re

gs
.

(C
A

M
)

OS

 7 / 30

Tag

Virtual Memory Paging:
Modern Implementation

● Most modern processors use paging
● Typically: virtually-indexed, physically-tagged L1$

L1 Cache

Program address

Phys. page

...

...

Virt. page | Phys. page | Prot.

...

...
L1 TLB

Access
Check

Page Table
(tree structure

in memory)Miss

Hit

Data

Virt. page | Page offset

 8 / 30

Virtual Memory Paging:
Properties

● The good
– Flat, private address space

– Transparent paging & sharing
● Memory oversubscription

● The bad
– Fixed (page) granularity

– TLB misses in big data apps
● Up to 50% of the cycles

[Basu et al. «Efficient Virtual Memory for
Big Memory Servers», ISCA’13]

● The ugly
– Complex (but well understood) HW design

– Inter-process communication (IPC) is very costly and complex
● Each process has its own page table
● Communication goes through the OS

– TLB and page tables managed by the OS
● Data copies or explicit page sharing (cannot just pass a pointer)

 9 / 30

● Heartbleed [went public in April 2014]

– Missing buffer bounds check in OpenSSL
● Pages have fixed granularity

– Servers: remote theft of private keys
● ~17% of internet servers (~0.5 million)

– Clients: remote theft of session cookies &
passwords

– Problem undetected for 2 years

Recent Security Problems:
Protection Granularity

Input buffer (190B) Critical dataBuffer size (260)

Network input

Out-of-bounds pointer to buffer

 10 / 30

Recent Security Problems:
Function/Protection Separation

● Meltdown [went public in January 2018]

– Allows reading arbitrary memory
1)Force branch to mis-predict
2)An invalid speculative read loads data

into the cache before it is squashed
3)Do a valid memory read that depends on

previous value (different lines present
depending on previous value)

4)Time cache access to discover value
– Any CPU with speculative execution is

potentially vulnerable
● Intel, IBM and ARM chips are affected

 11 / 30

Virtual Memory Segmentation:
The B5000 [1/2]

● Burroughs Corporation (1961)
– First commercial system with virtual memory

● One-level storage system (same objective)
– On-demand memory / disk transfer

● Segment: contiguous region of memory
representing a logical entity (e.g., routine or array)
– We’re getting close to capabilities

Source: Burroughs Corporation

Physical address | Size | {Read,Write,Execute}

 12 / 30

Virtual Memory Segmentation:
The B5000 [2/2]

Source: Burroughs Corporation

push value:0xff
push value:0x03
push seg:1
store

Memory

Disk

...

1: wr,disk,0x00,0x04

OS

0x00
0x04

Program reference table (PRT)
(segment descriptors)

Stack Type tag

seg1 s

0x10

0x14

1: wr,mem ,0x10,0x04

0xff

0xff v
0x03Limit check: 0x03 < 0x04

Add seg1‘s base: 0x10

Move entire segment
into memory

Stack machine:
Store value 0xff into segment 1 (offset 3)

v

 13 / 30

B500
(‘61)

● Global table

● Descriptors can be
stored in (tagged)
stack

● Code segments:
can only be
entered at known
points, and are not
writable

Virtual Memory Segmentation:
Segment Descriptor Protection

Rice Univ.
(‘59)

● Global root table

● Can build a «tree»
of descriptors
(e.g., matrix)

● Full traversal on
every operation

● Descriptors
passed as register
arguments

BLM
(‘68)

● Descriptors can be
stored in arbitrary
(tagged) memory

● Needs garbage
collection

– Segment freed
only when
nobody holds a
reference

 14 / 30

Virtual Memory Segmentation:
Properties

● The good
– Conceptually simple

● Range check
– Arbitrary granularity

– Sharing of logical entities

(e.g., array, procedure)

– Can grow/shrink segments
● Addressed with offsets
● Indirected to descriptors
● Relocated by the OS

● The bad
– External memory

fragmentation
● OS does compaction

– Segment descriptor
indirection chains

– Memory tagging

● The ugly
– Relocation must locate

affected descriptors

– Creating new segment
descriptors needs OS
intervention

 15 / 30

Capability Addressing
Architectures

● Implemented by hardware (like segments)
– «Fat pointer» with permission bits

● Can be safely manipulated by user software iff we
never «upgrade» a capability
– Copy
– Shrink range
– Remove permissions

 16 / 30

Capability Addressing:
Historical Perspective

● Chicago Magic Number
Machine (‘67–cancelled)
– (1) Split data/capability registers

and segments

– (2) Uniform naming for user
objects and system operations

● Plessey System 250 (‘70)

– (1) (2)

– (3) 2-way protected procedures;
can represent object methods

– (4) No privileged software

– Capabilities point to central table

● Simpler segment relocation
● Table entries are garbage-

collected

● Cambridge CAP Computer (‘76)
– (1) (2) (3) (4)

– All capabilities (indirectly) point to
capabilities in parent process

● User-managed capabilities
● Traversed on every access
● Cached in «capability unit»

● IBM System/38 (‘79)

– (2) (3)

– Capabilities instead of pointers

● Memory tagging
– 40-bit segment space

● Never reused (no need for
garbage collection)

– Capabilities on top of paging

 17 / 30

Review of Recent Security
Vulnerabilities

● Heartbleed
– «Buffer bounds check in OpenSSL»
– Capabilities protect arbitrary buffer

bounds

● Meltdown
– «Read arbitrary memory by exploiting

speculative memory accesses and cache
access timing together»

– A simple address range check can be
executed before the memory access

 18 / 30

Capability Addressing:
Properties

● The good
– Arbitrary granularity

– (Safely) User-managed

– Uniform protection
mechanism

● Protect from array access
to method invocation

● The bad
– Pervasive memory tagging

● Extra DRAM bandwidth
consumption

– Compatibility with existing
languages

● The ugly
– Capability revocation (for object deletion) is costly

● Indirection→overheads on every access
● Virtual address non-reuse→ internal memory fragmentation
● Garbage collection→overheads, not part of all languages

 19 / 30

Modern Proposals
for Capability Addressing

 20 / 30

Language Compatiblity: [1/2]
Capabilities-as-Pointers in C

● Objective: use capabilities in all C pointers
● Add an «offset» field:

– Memory access check: 0 ≤ offset < size
– Pointer arithmetic modifies «offset»
– Allows common idioms in low-level C code

● Operations:
– Get/Set/Add/Sub offset
– Compare capabilities

[Chisnall et al. «Beyond the PDP-11: Architectural support for a memory-safe C abstract machine» ASPLOS’15]

– Capability to pointer
– Pointer to capability

(from default capability)

Base | Size | Offset | Permissions

 21 / 30

Language Compatiblity: [2/2]
Capabilities-as-Pointers in C

● Use existing/new attributes to identify permissions
– __capability int*: Read-write
– __capability const int*: Read-only
– __capability int (*)(int): Call-only
– intptr_t ptr = cap: Arithmetic on offset

● Need __capability only in library interfaces
that cross capability and non-capability worlds
– Otherwise compiler can use capabilities instead

of pointers (i.e., malloc returns a capability)
● Negligible performance overheads in most cases

[Chisnall et al. «Beyond the PDP-11: Architectural support for a memory-safe C abstract machine» ASPLOS’15]

 22 / 30

Efficient Memory Tagging: [1/2]
Eliminate Word Tagging

● Objective: eliminate DRAM traffic for tags
● Repurpose one bit in the page table

– Very efficient checks and storage, no traffic
● Both page types can be mixed

– Structures with capabilities need to be split
– Uses separate data/capability stacks

[Vilanova et al. «CODOMs: Protecting Software with Code-centric Memory Domains» ISCA’14]

Virt. page | Phys. page | Prot. | Tag

...

...
TLB

Access
Check

Is capability

access instruction?

 23 / 30

Efficient Memory Tagging: [2/2]
Optimize Word Tagging

● Objective: decrease DRAM traffic for tags

● Tag cache has very good spatial locality
– < 8% DRAM traffic increase

● Traffic «compression» in 2-level tag table
– <1% – 4% DRAM traffic increase

● Ellide same-value writes: 2x–20x write reduction

[Joannou et al. «Efficient Tagged Memory» ICCD’17]

DRAM

DRAM
Controller

Tag
cache

Addr. Tag | Data | Tag bit

...

...

Cache

Ta
g

 b
it

s

Tag
table

 24 / 30

Capability Revocation: [1/2]
Scope-Based Revocation

● Objective: minimize need for revocation
● Arguments often ignored by callee after return:

– True for >95% of memory references in Linux
kernel modules when mutually isolated

● «Synchronous» (scope-revocable) vs.
«Asynchronous» (arbitrary-revocable) capabilities
– Synchronous caps. only in registers or cap. stack
– Capability stack frame inaccessible after return

__capability int *array
int index = 0x1
func(array, index)

int secret = ...
func(array, index):
 return array[index*secret]

[Vilanova et al. «CODOMs: Protecting Software with Code-centric Memory Domains» ISCA’14]

 25 / 30

Capability Revocation: [2/2]
Efficient Revocation Control

● Objective: make revocation efficient
– Reuse addresses→avoid internal fragmentation
– Avoid garbage collection→performance

overheads & not part of all languages
● Add 46-bit «revocation counter» (reusable 2⁴ times)⁶

– Checked when a capability is loaded into a register
– Revocation: increment the counter and propagate

to capability registers (immediate invalidation)

[Vilanova et al. «CODOMs: Protecting Software with Code-centric Memory Domains» ISCA’14]

Base Size Prot. Value Pointer

Capability

Value

Revocation counter

Equal?

 26 / 30

Inter-Process Communication
Without OS Intervention

● Objective: protected procedure calls across
existing Linux processes without involving the OS
– Processes in a shared page table, but isolated

1)Exchange rights and policies through OS
2)OS generates specialized code from policies
3)Processes use the «JIT thunk» to communicate

● Full-stack web server
– Up to 5.12x speedup

[Vilanova et al. «Direct Inter-Process Communication (dIPC): Repurposing the CODOMs Architecture to
Accelerate IPC» EuroSys’17]

Client process Server processJIT thunk OS

Call path

Return path

 27 / 30

Further Proposals

 28 / 30

Pico-Para-Virtualization

● Problem: many VMs rely on trap-and-emulate
– A memory access or instruction traps into VMM
– Examples: I/O devices, specific HW registers
– Allows migration between heterogeneous hosts

● Solution: Access low-level HW with protected
procedure calls (i.e., through a capability)
– Close to original HW, but has opaque

implementation
– Example: memory mapped control register

● Native: simply write into the register
● VM: handle device emulation

 29 / 30

Capabilities for Memory
Translation

● Problem: Lots of TLB misses in big data apps
– Up to 50% of cycles spent servicing misses

[Basu et al. «Efficient Virtual Memory for Big Memory Servers», ISCA’13]

● Solution: Use base address in capabilities to
directly index physical memory (bypass TLB)
– A single bit in a capability identifies TLB bypass
– Can use revocation counters in CODOMs to

support paging of entire segments

 30 / 30

Conclusions:
Security and Performance

● SW and HW design are now much more mature
– Early commercial attemps at capabilities were

often too complex for their time
● Current security interests bring a renewed push

– Thwarts attacks like heartbleed and meltdown
– Optimized for compatibility
– Improved performance

● Solve or improve many of the open problems
● Can provide full-stack application speedups

Lluís Vilanova
vilanova@technion.ac.il

mailto:vilanova@technion.ac.il

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30

