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Outline

● Brief history of memory virtualization and protection
– Memory paging
– Memory segmentation

● Classic hardware capability systems
● Recent hardware capability systems
● Some ideas for the future
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Origins of Memory Virtualization 
and Protection

● Virtualization → programmability & efficiency
– Automate swapping between memory & disk

● Growing program sizes
● Complex to do manually

– Share code and data across processes
● Fight memory scarcity

● Protection → security
– Multiprogramming

● Run other programs during I/O wait times
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Why Do We Want Capabilities?

● Coined by Dennis and Van Horn [CACM’66]

– A communicable and unforgeable token that at 
the same time authorizes and identifies the 
destination of an operation

● Think of «fat pointers» with permission bits

– Fine-grained memory protection
– Fine-grained, user-defined isolation domains

● Safely managed by user: «diminish» rights
– E.g., forbid writes, or make range smaller

● Enforced by HW: tamper-proof structures

Base address | Size | {Read,Write,Call,...}
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● University of Manchester (1956-1962)
● One-level storage system (demand paging)

– Transparently move fix-sized data blocks (pages) 
between memory and disk on-demand

Source: University of Manchester

Virtual Memory Paging:
The Atlas Computer

Memory

Disk

Application 1

Application 2

  
T

ra
ns

la
tio

n 
re

gs
. 

(C
A

M
)

OS



  7 / 30

Tag

Virtual Memory Paging:
Modern Implementation

● Most modern processors use paging
● Typically: virtually-indexed, physically-tagged L1$

 

L1 Cache

Program address

Phys. page

...

...

Virt. page | Phys. page | Prot.

...

...
L1 TLB

Access
Check

Page Table
(tree structure 

in memory)Miss

Hit

Data

Virt. page | Page offset 
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Virtual Memory Paging:
Properties

● The good
– Flat, private address space

– Transparent paging & sharing
● Memory oversubscription

● The bad
– Fixed (page) granularity

– TLB misses in big data apps
● Up to 50% of the cycles

[Basu et al. «Efficient Virtual Memory for 
Big Memory Servers», ISCA’13]

● The ugly
– Complex (but well understood) HW design

– Inter-process communication (IPC) is very costly and complex
● Each process has its own page table
● Communication goes through the OS

– TLB and page tables managed by the OS
● Data copies or explicit page sharing (cannot just pass a pointer)
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● Heartbleed  [went public in April 2014]

– Missing buffer bounds check in OpenSSL
● Pages have fixed granularity

– Servers: remote theft of private keys
● ~17% of internet servers (~0.5 million)

– Clients: remote theft of session cookies & 
passwords

– Problem undetected for 2 years

Recent Security Problems:
Protection Granularity

Input buffer (190B) Critical dataBuffer size (260)

Network input

Out-of-bounds pointer to buffer
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Recent Security Problems:
Function/Protection Separation 

● Meltdown  [went public in January 2018]

– Allows reading arbitrary memory
1)Force branch to mis-predict
2)An invalid speculative read loads data 

into the cache before it is squashed
3)Do a valid memory read that depends on 

previous value (different lines present 
depending on previous value)

4)Time cache access to discover value
– Any CPU with speculative execution is 

potentially vulnerable
● Intel, IBM and ARM chips are affected
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Virtual Memory Segmentation:
The B5000         [1/2]

● Burroughs Corporation (1961)
– First commercial system with virtual memory

● One-level storage system (same objective)
– On-demand memory / disk transfer

● Segment: contiguous region of memory 
representing a logical entity (e.g., routine or array)
– We’re getting close to capabilities

Source: Burroughs Corporation

Physical address | Size | {Read,Write,Execute}
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Virtual Memory Segmentation:
The B5000         [2/2]

Source: Burroughs Corporation

push value:0xff
push value:0x03
push seg:1
store

Memory

Disk

...

1: wr,disk,0x00,0x04

OS

0x00
0x04

Program reference table (PRT)
(segment descriptors)

Stack Type tag

seg1 s

0x10

0x14

1: wr,mem ,0x10,0x04

0xff

0xff v
0x03Limit check: 0x03 < 0x04

Add seg1‘s base: 0x10

Move entire segment
into memory

Stack machine:
Store value 0xff into segment 1 (offset 3)

v
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B500        
(‘61)

● Global table

● Descriptors can be 
stored in (tagged) 
stack

● Code segments: 
can only be 
entered at known 
points, and are not 
writable

Virtual Memory Segmentation:
Segment Descriptor Protection

Rice Univ. 
(‘59)

● Global root table

● Can build a «tree» 
of descriptors 
(e.g., matrix)

● Full traversal on 
every operation

● Descriptors 
passed as register 
arguments

BLM         
(‘68)

● Descriptors can be 
stored in arbitrary 
(tagged) memory

● Needs garbage 
collection

– Segment freed 
only when 
nobody holds a 
reference
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Virtual Memory Segmentation:
Properties

● The good
– Conceptually simple

● Range check
– Arbitrary granularity

– Sharing of logical entities

(e.g., array, procedure)

– Can grow/shrink segments
● Addressed with offsets
● Indirected to descriptors
● Relocated by the OS

● The bad
– External memory 

fragmentation
● OS does compaction

– Segment descriptor 
indirection chains

– Memory tagging

● The ugly
– Relocation must locate 

affected descriptors

– Creating new segment 
descriptors needs OS 
intervention
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Capability Addressing 
Architectures

● Implemented by hardware (like segments)
– «Fat pointer» with permission bits

● Can be safely manipulated by user software iff we 
never «upgrade» a capability
– Copy
– Shrink range
– Remove permissions
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Capability Addressing:
Historical Perspective

● Chicago Magic Number 
Machine (‘67–cancelled)
– (1) Split data/capability registers 

and segments

– (2) Uniform naming for user 
objects and system operations

● Plessey System 250 (‘70)

– (1) (2)

– (3) 2-way protected procedures; 
can represent object methods

– (4) No privileged software

– Capabilities point to central table

● Simpler segment relocation
● Table entries are garbage-

collected

● Cambridge CAP Computer (‘76)
– (1) (2) (3) (4)

– All capabilities (indirectly) point to 
capabilities in parent process

● User-managed capabilities
● Traversed on every access
● Cached in «capability unit»

● IBM System/38 (‘79)

– (2) (3)

– Capabilities instead of pointers

● Memory tagging
– 40-bit segment space

● Never reused (no need for 
garbage collection)

– Capabilities on top of paging
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Review of Recent Security 
Vulnerabilities

● Heartbleed
– «Buffer bounds check in OpenSSL»
– Capabilities protect arbitrary buffer 

bounds

● Meltdown
– «Read arbitrary memory by exploiting 

speculative memory accesses and cache 
access timing together»

– A simple address range check can be 
executed before the memory access
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Capability Addressing:
Properties

● The good
– Arbitrary granularity

– (Safely) User-managed

– Uniform protection 
mechanism

● Protect from array access 
to method invocation

● The bad
– Pervasive memory tagging

● Extra DRAM bandwidth 
consumption

– Compatibility with existing 
languages

● The ugly
– Capability revocation (for object deletion) is costly

● Indirection→overheads on every access
● Virtual address non-reuse→ internal memory fragmentation
● Garbage collection→overheads, not part of all languages
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Modern Proposals
for Capability Addressing
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Language Compatiblity:        [1/2]
Capabilities-as-Pointers in C

● Objective: use capabilities in all C pointers
● Add an «offset» field:

– Memory access check: 0 ≤ offset < size
– Pointer arithmetic modifies «offset»
– Allows common idioms in low-level C code

● Operations:
– Get/Set/Add/Sub offset
– Compare capabilities

[Chisnall et al. «Beyond the PDP-11: Architectural support for a memory-safe C abstract machine» ASPLOS’15]

– Capability to pointer
– Pointer to capability 

(from default capability)

Base | Size | Offset | Permissions
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Language Compatiblity:        [2/2]
Capabilities-as-Pointers in C

● Use existing/new attributes to identify permissions
– __capability int*: Read-write
– __capability const int*: Read-only
– __capability int (*)(int): Call-only
– intptr_t ptr = cap: Arithmetic on offset

● Need __capability only in library interfaces 
that cross capability and non-capability worlds
– Otherwise compiler can use capabilities instead 

of pointers (i.e., malloc returns a capability)
● Negligible performance overheads in most cases

[Chisnall et al. «Beyond the PDP-11: Architectural support for a memory-safe C abstract machine» ASPLOS’15]
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Efficient Memory Tagging:    [1/2]
Eliminate Word Tagging

● Objective: eliminate DRAM traffic for tags
● Repurpose one bit in the page table

– Very efficient checks and storage, no traffic
● Both page types can be mixed

– Structures with capabilities need to be split
– Uses separate data/capability stacks

[Vilanova et al. «CODOMs: Protecting Software with Code-centric Memory Domains» ISCA’14]

Virt. page | Phys. page | Prot. | Tag

...

...
TLB

Access
Check

Is capability

access instruction?
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Efficient Memory Tagging:    [2/2]
Optimize Word Tagging

● Objective: decrease DRAM traffic for tags

● Tag cache has very good spatial locality
– < 8% DRAM traffic increase

● Traffic «compression» in 2-level tag table
– <1% – 4% DRAM traffic increase

● Ellide same-value writes: 2x–20x write reduction

[Joannou et al. «Efficient Tagged Memory» ICCD’17]

DRAM

DRAM
Controller

Tag
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Addr. Tag | Data | Tag bit
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Capability Revocation:          [1/2]
Scope-Based Revocation

● Objective: minimize need for revocation
● Arguments often ignored by callee after return:

– True for >95% of memory references in Linux 
kernel modules when mutually isolated

● «Synchronous» (scope-revocable) vs. 
«Asynchronous» (arbitrary-revocable) capabilities
– Synchronous caps. only in registers or cap. stack
– Capability stack frame inaccessible after return

__capability int *array
int index = 0x1
func(array, index)

int secret = ... 
func(array, index):
  return array[index*secret]

[Vilanova et al. «CODOMs: Protecting Software with Code-centric Memory Domains» ISCA’14]
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Capability Revocation:          [2/2]
Efficient Revocation Control

● Objective: make revocation efficient
– Reuse addresses→avoid internal fragmentation
– Avoid garbage collection→performance 

overheads & not part of all languages
● Add 46-bit «revocation counter» (reusable 2⁴  times)⁶

– Checked when a capability is loaded into a register
– Revocation: increment the counter and propagate 

to capability registers (immediate invalidation)

[Vilanova et al. «CODOMs: Protecting Software with Code-centric Memory Domains» ISCA’14]

Base Size Prot. Value Pointer

Capability

Value

Revocation counter

Equal?
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Inter-Process Communication 
Without OS Intervention

● Objective: protected procedure calls across 
existing Linux processes without involving the OS
– Processes in a shared page table, but isolated

1)Exchange rights and policies through OS
2)OS generates specialized code from policies
3)Processes use the «JIT thunk» to communicate

● Full-stack web server
– Up to 5.12x speedup

[Vilanova et al. «Direct Inter-Process Communication (dIPC): Repurposing the CODOMs Architecture to 
Accelerate IPC» EuroSys’17]

Client process Server processJIT thunk OS

Call path

Return path
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Further Proposals
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Pico-Para-Virtualization

● Problem: many VMs rely on trap-and-emulate
– A memory access or instruction traps into VMM
– Examples: I/O devices, specific HW registers
– Allows migration between heterogeneous hosts

● Solution: Access low-level HW with protected 
procedure calls (i.e., through a capability)
– Close to original HW, but has opaque 

implementation
– Example: memory mapped control register

● Native: simply write into the register
● VM: handle device emulation
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Capabilities for Memory 
Translation

● Problem: Lots of TLB misses in big data apps
– Up to 50% of cycles spent servicing misses

[Basu et al. «Efficient Virtual Memory for Big Memory Servers», ISCA’13]

● Solution: Use base address in capabilities to 
directly index physical memory (bypass TLB)
– A single bit in a capability identifies TLB bypass
– Can use revocation counters in CODOMs to 

support paging of entire segments
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Conclusions:
Security and Performance

● SW and HW design are now much more mature
– Early commercial attemps at capabilities were 

often too complex for their time
● Current security interests bring a renewed push

– Thwarts attacks like heartbleed and meltdown
– Optimized for compatibility
– Improved performance

● Solve or improve many of the open problems
● Can provide full-stack application speedups

Lluís Vilanova
vilanova@technion.ac.il
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