
Project CrayOn: Back to
the future for a more

General-Purpose GPU?
Philip Machanick

Why a better GPU?

• makes a lot of sense to base HPC on mass-market parts

• economy of scale, mass base for toolchains

• but: GPUs purpose-designed for graphics can be a poor
fit to general workloads

what can we learn from the past?

GPU endpoint

• at some point a faster GPU will saturate human sense

• after that making a GPU faster for GPGPU only makes
sense on momentum

• losing a little of ultimate GPU speed will matter less
than being more generally applicable

By Jitze Couperus - Flickr: Supercomputer - The Beginnings, CC BY 2.0,
https://commons.wikimedia.org/w/index.php?curid=19382150

By Clemens PFEIFFER (Own work) [CC BY 2.5 (http://creativecommons.org/
licenses/by/2.5) or CC BY 2.5 (http://creativecommons.org/licenses/by/2.5)],

via Wikimedia Commons

1975 – first successful vector machine

1965 – many ideas behind RISC
CDC 6600

Cray-1

a lot to learn from Seymour Cray and competition

What makes a
supercomputer?

• more expensive mix of standard parts

• many CPUs, faster memory and interconnects

• exploiting packaging breakthroughs

• Cray-1 used SRAM

• novel architectures that suit HPC

• e.g. vectors and other single instruction-multiple data
stream (SIMD) modes

Weird and wonderful
1986 – up to 64Ki 1-bit processors 

12-dimensional hypercube interconnect

CM-1
1991 – up to 64Ki Sparc processors

CM-5

http://tamikothiel.com/cm/CM-1_r_700w.gif

http://people.csail.mit.edu/bradley/cm5/Muzio_CM5.jpg

the ultimate SIMD design

http://tamikothiel.com/cm/press/TheDesignOfTheConnectionMachine.pdf

Other ideas

transputer – 4x high speed
bidirectional serial links, distributed

memory – 1980s

http://www.transputer.net/fbooks/tarch/tarch.html
http://www.psdevwiki.com/ps3/CELL_BE

Cell Broadband Engine – e.g. used in PS3 
1 PPC CPU, 8x vector+local memory units

General shake-down

• hard to program, limited fit to application space

• SIMD

• distributed memory

• specialist local memory

Back to GPUs

• Ahead of GPU endpoint

• reverse the design logic:

• start with a good general-purpose design and add
enough to do graphics

What about Larrabee?

• Intel project to do just that

• started from Pentium pipeline

• multiple cores

• graphics extensions

• did not get to market

what went wrong?

https://people.cs.clemson.edu/~mark/330/colwell/pentium.gif
Alpert, D., & Avnon, D. (1993). Architecture of the Pentium microprocessor.

IEEE micro, 13(3), 11-21.

µ-ops created in decode – from there on close to RISC

http://chip-architect.com/news/Northwood_130nm_die_text_1600x1200.jpg

Pentium 1993 Pentium 4 Northwood 2002

Why Intel caught up

Basic Pentium pipeline not
so competitive

• to crack instructions into µ-ops is a small extra overhead
when the backend is big and complex

• µ-ops avoid directly executing CISC instructions in
hardware

• a significant overhead with a simple pipeline

Bottom line?

• If you want to build a multicore design with a large
number of simple CPUs, RISC is still likely to win

• shared memory is much easier to program than
distributed memory or specialist local memory

• multiple similar CPUs and vectors are the easiest modes
of parallelism to exploit

Packaging

• Cray-1 was able to take advantage of a memory
breakthrough

• cylindrical shape reduced propagation delays

• what’s new?

Going 3D

• Moore’s Law scalability limited by factors like leakage
current

• 2.5D

• 3D die stacking

• picoserver

• HMC RAM – logic layer plus DRAM

CPURAM TSV heat sink

Even more 3D

• 3D Xpoint NVRAM has 3D internal structure

• what of recreating 
the Cray-1 structure 
in miniature?

CPU
RAM
IO
bus

space between dies and under
interconnect for cooling

propagation delays short, can
be made relatively precise –

ideally avoid buffering

Putting it all together

• GPGPU is a good idea – mass-market base for HPC part

• start from GP then add GPU: GP+GPU

• what will a GP+GPU look like?

CrayOn
CPU
RAM
IO
bus

Each CPU module: multiple simple RISCs with vector units

RAM modules: either SRAM or fast DRAM

SRAM configurable as caches or specialist graphics RAM

what else does a GPU need?

