
© 2018 Arm Limited

This Architecture Tastes
Like Microarchitecture

Curtis Dunham

Arm Research

Pioneering Processor Paradigms (WP3)

Sunday, February 25, 2018

© 2018 Arm Limited 2

Disclaimer

I do not speak for my employer.

This presentation (and accompanying paper) do not represent Arm projects or future
products.

© 2018 Arm Limited 3

Clarification: definitions of terms

Architecture:
Abstraction provided
to software;
the hardware-
software interface;
the instruction-set
architecture (ISA).

Microarchitecture:
Implementation of
the architecture
abstraction.

Microarchitecture

Architecture

Software
User code

Library
Runtime

OS
Hypervisor

PDF

© 2018 Arm Limited 4

The paper

Future ISA Design
Time multiplexing
Operand encoding

© 2018 Arm Limited 5

This talk

A different route to the same destination

Future ISA Design
Time multiplexing
Operand encoding

MIPS stay tuned!

© 2018 Arm Limited 6

On the resourcefulness of Computer Architects

We have a history of trying to solve microarchitectural
difficulties by exposing them to software.

Obvious example: Branches are really hard, so how about…

• Delay slots

• Branch hints

Then! We solve the problem better in a transparent way.

• Front end microarchitecture, e.g. branch prediction

… Now the ISA contains antiquated performance hacks.

And maybe worse things…

Microarchitecture

Architecture

Software Help me,
software!

?

Microarchitecture

Architecture

Software

I got this!

© 2018 Arm Limited 7

On the future resourcefulness of Computer Architects

Other ISA aspects follow the same pattern, but they aren’t as obvious.

They seem normal.

These unchallenged assumptions are slowing the rate of progress;
architecture must continue:

• gaining ground against the software stack

• raising the level of abstraction

• re-negotiating the hardware-software boundary.

This talk: some promising avenues on important problems!

But first, a little history…

Microarchitecture

Software

Architecture

© 2018 Arm Limited

Back to Basics

© 2018 Arm Limited 9

Turing machine

Tape

Tape
Head

Automaton /
State Table

Alan Turing

Code

Data

Computation …

Universal Turing Machine

© 2018 Arm Limited 10

Turing machine retrospective

I

D

Computation ≡
Rewrites on a Memory

© 2018 Arm Limited 11

Virtual computation: within one computer, many

 Nota bene: not “virtualization” per se; think “processes”

Virtual memory Time multiplexing

© 2018 Arm Limited 12

Data vs. Code, in search of programming model goodness

Virtual computation basics

Virtual memory

Use of data is unevenly distributed

• Want: system automatically maps data to devices
(i.e., optimizes locality)

Virtual computation

Use of code is unevenly distributed (code is data…)

• Want: system automatically maps code to devices
(i.e., optimizes responsiveness and/or throughput)

“Computer,
do for me!”

© 2018 Arm Limited

A story of
virtual memory

© 2018 Arm Limited 14

Virtual memory, a.k.a. “folding”

Is automatic “folding” of programs efficient enough to displace manual?, Sayre (IBM), 1969

Abstract:

The operation of “folding” a program into the available memory is discussed.
Measurements by Brawn et al. and by Nelson on an automatic folding mechanism of simple
design, a demand paging unit built at the IBM Research Center by Belady, Nelson, O'Neill,
and others, permitting its quality to be compared with that of manual folding, are discussed,
and it is shown that given some care in use the unit performs satisfactorily under the
conditions tested, even though it is operating across a memory-to-storage interface with a
very large speed difference. The disadvantages of prefolding, which is required when the
folding is manual, are examined, and a number of the important troubles which beset
computing today are shown to arise from, or be aggravated by, this source. It is concluded
that a folding mechanism will probably become a normal part of most computing systems.

(Emphases added)

© 2018 Arm Limited 15

“Self-created obstacles”

“In ceasing to expend energy:
• in a process whose main result is to make programs less fit to run on other machine configurations
• to run in company with other programs, or
• to run with temporarily reduced resources,
we do more than reduce costs; we remove self-created obstacles which today are impeding the development
of needed types of systems”

Move In

Move Out

© 2018 Arm Limited

Some predictions

© 2018 Arm Limited 17

Predictions / Recommendations 22 years hence

from Microprocessor Report, vol. 10 #10 (1996):

For this special issue, we asked several processor architects how, based on 25 years of
history, they see the microprocessor continuing to evolve in the future. Their responses
discuss several technical barriers to success and how they might be overcome. Equally
important is an often overlooked issue: what will people do with all this performance?

“…over the coming decade memory subsystem design will be the only important design
issue for microprocessors” – Dick Sites, “It's the Memory, Stupid!”

“Translating a clean ABI to an architecture designed as a good target is a much easier task
that should approach the efficiency of code directly compiled for the hardware instruction
set.” – Bill Dally, “The End of Instruction Sets”

© 2018 Arm Limited

 Where we are today

© 2018 Arm Limited 19

Virtualizing techniques and mechanisms
Data vs. Code

Virtual memory: caching, paging

HW accelerated:

• Multi-level caches, cache coherence

• Translation Lookaside Buffers (TLB)

• Page table walkers (HW TLB miss servicing / fill)

Not HW accelerated:

• Paging (i.e. management of DRAM contents)

Issue: translation scheme (therefore their
optimized embodiments) tightly coupled
with primary computation modality (ISA)

Virtual computation: muxing, scheduling

HW accelerated:

• Virtual machine entry/exit, interrupt routing
(“virtualization” only, limited applicability, limited
deployments)

Not HW accelerated:

• Thread switching

• Thread migration

• Thread scheduling

Issue: multiplexing schemes tied to 1
computational modality (ISA, OS)

© 2018 Arm Limited 20

Killer Microseconds

Communications of the ACM

Vol. 60 No. 4
(April 2017)

© 2018 Arm Limited 21

Killer Microseconds cartoon

Supervisor (OS)

Unprivileged A

Hypervisor

Priv

CtxSw

Sched

Unprivileged B

Priv

CtxSw

Woe To All Who Enter Here
‘Cause that’s even slower

Basic context switch on commodity system ~ 1 µs

Fast I/O device now/very soon approaching ~ 1 µs

I/O stall I/O done

© 2018 Arm Limited 22

The Controversial Leap: déjà vu?

Our architecture “tasting like” microarchitecture has led to
challenges solving this problem (and others).

Move in
Move out

Machine state
(registers, etc.)

distinct

µs
Compiler OS

© 2018 Arm Limited 23

Killer Microseconds cartoon, revisited

Priv

CtxSw

Sched

Priv

CtxSw

This particular division of labor between hardware and software:

• Imposes sequence, creating a temporal bottleneck

• Needlessly involves software in a machine-specific activity (remember we dream of heterogeneous…)

• Prevents hardware tricks: asynchrony, laziness, …

© 2018 Arm Limited 24

First, registers … are faster than memory.
Second, registers are more efficient for a compiler
to use than other forms of internal storage.

Registers

Could modern caching schemes better predict the
useful lifetimes of RF/L0 D$ data than a compiler?

Microarchitecture

Architecture

Perceptron Learning for Reuse Prediction,
Teran, Wang, and Jiménez, MICRO 2016

“register”

“register”

vs.

Register renaming

Bypass network

ARF or PRF

Reorder Buffer

Graph coloring RA Linear Scan RA

First, registers … are faster than memory.
Second, registers are more efficient for a compiler
to use than other forms of internal storage.

© 2018 Arm Limited 25

Registers as non-virtual memory

Caches

Core

DRAM

Durable storage

ld, st

write(2)
fsync(2)

Virtual memory

mmap(2)

© 2018 Arm Limited 26

“Virtual Memory” by Peter J. Denning, 1970

(abstract begins…)

The need for automatic storage allocation arises from desires for program
modularity, machine independence, and resource sharing. Virtual memory is
an elegant way of achieving these objectives. In a virtual memory, the
addresses a program may use to identify information are distinguished from
the addresses the memory system uses to identify physical storage sites, and
program-generated addresses are translated automatically to the
corresponding machine addresses. Two principal methods for implementing
virtual memory, segmentation and paging, are compared and contrasted.

Might we add: memory renaming as another principal method?

(as espoused in works by Franklin et al., Moshovos et al., Tyson et al., …)

© 2018 Arm Limited 27

The future demands heterogeneous computing

Today: code specialized against a particular microarchitecture flavor is impractical to run
on another.

CPUs and GPUs are quite different flavors.

How might we describe computations such that the code executes
on the most effective computational device?

Issues include operand schemes, hardware threading, hardware scheduling, and virtual
memory. The hardware-software interface must move up the stack!

Let’s think about the more palatable architectures of the future.

28 28 © 2018 Arm Limited

Thank You!
Danke!
Merci!
谢谢!
ありがとう!
Gracias!
Kiitos!
감사합니다
धन्यवाद

