arm

This Architecture Tastes
Like Microarchitecture

Curtis Dunham

Arm Research

Pioneering Processor Paradigms (WP3)
Sunday, February 25, 2018

Disclaimer

| do not speak for my employer.

This presentation (and accompanying paper) do not represent Arm projects or future
products.

2 © 2018 Arm Limited q r m

Clarification: definitions of terms

Architecture:
Abstraction provided
to software;

the hardware-

software interface; \
the instruction-set

architecture (ISA).

Microarchitecture:
Implementation of
the architecture
abstraction.

3 © 2018 Arm Limited q r m

The paper

MIPS: A VLSI Processor Architecture

John Hennessy, Norman Jouppi, Forest Baskett, and
John Gill

Stanford University
of Electrical and Computer Sclence

\

MIPS (Mi without [Pipe Stages) is a gencral purpose processor

1 Introduction

architecture designed to be implemented on a single VLSI chip. The main goal of the design is high
p in the ion of iled code. The archil is since it is a radical
break with the trend of modern i The basic phil hy of MIPS is to present
an instruction set that is a compiler-driven encoding of the microengine. Thus, little or no decoding is
needed and the { closely to mi i ions. The p is
but provides no pipeline interlock hardware; this function must be provided by software.

‘The MIPS architecture presents the user with a fast machine with a simple instruction set. This
approach is currently in use within the RISC project at Berkeley [4]; it is directly opposed to the

h taken by archil such as the VAX. However, there are significant differences between

the RISC approach and the approach used in MIPS:

1. The RISC architecture is simple both in the instruction set and the hardware needed to
that ion set. Although the MIPS instruction set has a simple hardware

4

2018 Arm Limited

arm

This talk

Future ISA Design
Time multiplexing
Operand encoding >

\

stay tuned!

A different route to the same destination

5 © 2018 Arm Limited a r m

On the resourcefulness of Computer Architects

stre -
. ° . . l
We have a history of trying to solve microarchitectural software

difficulties by exposing them to software. ~ Architecture

Obvious example: Branches are really hard, so how about... _

- Delay slots

« Branch hints

Then! We solve the problem better in a transparent way.

- Front end microarchitecture, e.g. branch prediction _

- Architecture

... Now the ISA contains antiquated performance hacks. _

And maybe worse things...
6 © 2018 Arm Limited q rm

On the future resourcefulness of Computer Architects

Other ISA aspects follow the same pattern, but they aren’t as obvious.

-JTI

- raising the level of abstraction /L Architectu re
- ~»
- re-negotiating the hardware-software boundary. I I | | |

This talk: some promising avenues on important problems!

They seem normal.

These unchallenged assumptions are slowing the rate of progress;
architecture must continue:

- gaining ground against the software stack

But first, a little history...
7 © 2018 Arm Limited q rm

+ + + + + + + W + + +

+ + + + + + + + + + +
kt I

+ + + + + + + + + + +

+ + + + + + + + + + +

+ + + + + + + + + + +

+ + + +

2018 Arm Limited

arm

&

Turing machine Computation ...

O
Automaton /
State Table
N¢ N
e
[L (Code
« Alan Turing
Tape
Head i Data

Universal Turing Machine

9 © 2018 Arm Limited q r m

Turing machine retrospective

Computation =
m Rewrites on a Memory

o

10 © 2018 Arm Limited q r m

Virtual computation: within one computer, many

Nota bene: not “virtualization” per se; think “processes”

-~ Time multiplexing

11 © 2018 Arm Limited q r m

Virtual computation basics

Data vs. Code, in search of programming model goodness

Virtual memory Virtual computation
Use of data is unevenly distributed Use of code is unevenly distributed (code s data..)
- Want: system automatically maps data to devices - Want: system automatically maps code to devices
(i.e., optimizes locality) (i.e., optimizes responsiveness and/or throughput)

“Computer,

III

do for me

12 © 2018 Arm Limited q r m

+ + + + + + + # + + +

story of

® + + + + + + + + + +
virtual memory
+ + + + + + + + + + +
+ + + + + + + + + + +
+ + + +

2018 Arm Limited

arm

&

Virtual memory, a.k.a. “folding”

Is automatic “folding” of programs efficient enough to displace manual?, Sayre (IBM), 1969

Abstract:

a demand paging unit

will probably become a normal part of most computing systems.

(Emphases added)

14 © 2018 Arm Limited a r m

“Self-created obstacles”

FEEERan
LTI

T
ST
ST

e

.7~’.. R
— *: A
| .
i

we remove self-created obstacles

S ANRERREE

mn:wwm
—n ApBan
SERREREE
gopapRaRaw
MEREREE
pEsoBORE

Move Out

© 2018 Arm Limited

15

+ + + + + + + *
+ + + + + + + #
S d. t.
+ + + + + + + +
+ + + + + + + +
+ + + + + + + +
e

2018 Arm Limited

&

arm

Predictions / Recommendations 22 years hence

from Microprocessor Report, vol. 10 #10 (1996):

For this special issue, we asked several processor architects how, based on 25 years of
history, they see the microprocessor continuing to evolve in the future. Their responses
discuss several technical barriers to success and how they might be overcome. Equally
important is an often overlooked issue: what will people do with all this performance?

“...over the coming decade memory subsystem design will be the only important design
issue for microprocessors” — Dick Sites, “It's the Memory, Stupid!”

“Translating a clean ABI to an architecture designed as a good target is a much easier task

that should approach the efficiency of code directly compiled for the hardware instruction
set.” — Bill Dally, “The End of Instruction Sets”

17 © 2018 Arm Limited a r m

£l £ o £l o £l £ af Ll o Ll
+ + + + + + + af -+ + -+
here we are toda

+ + + + + + + + + + +
+ * + + + + * + + + +
+ + + + + + - + - + +
+ + + +

2018 Arm Limited

arm

&

Virtualizing techniques and mechanisms

Data vs. Code

Virtual memory: caching, paging

HW accelerated:

- Multi-level caches, cache coherence
- Translation Lookaside Buffers (TLB)

- Page table walkers (HW TLB miss servicing / fill)
Not HW accelerated:

- Paging (i.e. management of DRAM contents)

Issue: translation scheme (therefore their
optimized embodiments) tightly coupled
with primary computation modality (ISA)

19 © 2018 Arm Limited

Virtual computation: muxing, scheduling

HW accelerated:

- Virtual machine entry/exit, interrupt routing
(“virtualization” only, limited applicability, limited
deployments)

Not HW accelerated:

« Thread switching
« Thread migration
« Thread scheduling

Issue: multiplexing schemes tied to 1
computational modality (ISA, OS)

arm

Killer Microseconds . .
contributed articles

DO01:10.1145/3015146))
block a thread's execution, with the

Microsecond-scale I/0 means tension program appearing to resume after the

. load completes. A host of complex mi-
between performance and productivity croarchitectural techniques make high

CO mmaun | Catio NS Of t h e AC I\/I that will need new latency-mitigating ideas, performance possible while supporting

including in hardware this intuitive programming model. Tech-

niques include prefetching, out-of-order
execution, and branch prediction. Since

Vol 60 N O 4 BY LUIZ BARROSO, MIKE MARTY, DAVID PATTERSON, AND nanosecond-scale devices are so fast
PARTHASARATHY RANGANATHAN low-level interactions are performed pri-

(April 2017) marily by hardware.

At the other end of the latency-mit-
igating spectrum, computer scientists
have worked on a number of tech-

niques—typically software based—to

] deal with the millisecond time scale.
Operating system context switching is
a notable example. For instance, when

a read() system call to a disk is made,

] the operating system kicks off the low-

level 1/O operation but also performs a

I croseco n s software context switch to a different

thread to make use of the processor

during the disk operation. The original
thread resumes execution sometime af-
terthe I/O completes. Thelongoverhead
of making a disk access (milliseconds)

easily outweighs the cost of two context
switches (microseconds). Millisecond-

THE COMPUTER SYSTEMS we use today make it easy scale devices are slow enough that the

fOr DFOYTATIMETS nitioate event latencies in the cost of these software-based mecha-
or programmers to mitigate event latencies in the nisms can be amortized (see Table 1).

20 © 2018 Arm Limited a r m

Killer Microseconds cartoon

Hypervisor
Supervisor (OS)
/?\
Unprivileged A — %
/0 stal |

Unprivileged B

Basic context switch on commodity system ~ 1 us

—

Fast I/O device now/very soon approaching ~ 1 us

21 © 2018 Arm Limited q rm

The Controversial Leap: déja vu?

Our architecture “tasting like” microarchitecture has led to
challenges solving this problem (and others).

/ Machine state

22 © 2018 Arm Limited q r m

Killer Microseconds cartoon, revisited

This particular division of labor between hardware and software:

- Imposes sequence, creating a temporal bottleneck
- Needlessly involves software in a machine-specific activity (remember we dream of heterogeneous...)

« Prevents hardware tricks: asynchrony, laziness, ...

23 © 2018 Arm Limited q r m

Registers

" Architecture

&

“register”

VS.

p
“register”

~ Graph coloring RA | |

Linear Scan RA

Register renaming | |

ARF or PRF

Microarchitecture

Bypass network

Reorder Buffer

-
First, registers ... are faster than memory.

Could modern caching schemes better predict the
useful lifetimes of RF/LO DS data than a compiler?

24

Second, registers are more efficient for a compiler
kto use than other forms of internal storage.

Compurep ARL‘HIHL‘HIH[

© 2018 Arm Limited

Perceptron Learning for Reuse Prediction,
Teran, Wang, and Jiménez, MICRO 2016

LRU

SHiP

SDBP

Perceptron

arm

v

Virtual memory

\

mmap(2)¢ A write(2)

V fsync(2)

25 © 2018 Arm Limited q r m

“Virtual Memory” by Peter J. Denning, 1970

(abstract begins...)

automatic storage allocation

addresses a program may use to identify information are distinguished from
the addresses the memory system uses to identify physical storage sites
translated automatically
Two principal methods for implementing
virtual memory, segmentation and paging, are compared and contrasted.

Might we add: memory renaming as another principal method?
(as espoused in works by Franklin et al., Moshovos et al., Tyson et al., ...)

26 © 2018 Arm Limited a r m

The future demands heterogeneous computing

o > ¥ '/f& .

Today: code specialized against a particular microarchitecture flavor is impractical to run
on another.

CPUs and GPUs are quite different flavors.

How might we describe computations such that the code executes
on the most effective computational device?

Issues include operand schemes, hardware threading, hardware scheduling, and virtual

memory. The hardware-software interface must move up the stack!
g B
\[’

|
Let’s think about the more palatable architectures of the future.

27 © 2018 Arm Limited q r m

Thank You!
Danke!
Merci
1T 155
HYMED!
Gracias!

Kiitos!
ZEALEHLICH
Yo-ddic

Arm Limited

