
This Architecture Tastes Like Microarchitecture
Curtis Dunham and Jonathan Beard

Arm Research
Austin, Texas, USA
{first.last}@arm.com

Abstract—Instruction set architecture bridges the gap between
actual implementations, or microarchitecture, and the software
that runs on them. Traditionally, instruction sets were a direct
reflection of the hardware resources and capabilities. The two
drifted apart in the rise of CISC and its microcoded implementa-
tions. In the 1980s, the RISC movement reasserted the philosophy
that the two should correspond, and that microcode was a less
desirable approach. Nevertheless, time has shown that the natural
tendency in industrial designs is to treat the instruction set as
an abstraction.

In this paper we review, with several decades of hindsight,
an early RISC proposal in the form of the original MIPS
architecture. While we find that the RISC movement left a legacy
congruent with its philosophy, the specific techniques proposed
in this seminal work were considerably more aggressive and did
not succeed. In our investigation, we find that RISC’s impact on
microarchitecture should be contrasted with its impact on ISA
design, where a promising and under explored approach is to
specify and therefore assume less about how the machine works,
not more. To that end, the authors review several competing ISA
design proposals from others; some that are aligned with the idea
that less detail about the machine is actually more and others,
such as transport triggered architecture, that take machine detail
to the extreme.

I. INTRODUCTION

Broadly speaking, this position paper is about the design of
instruction set architectures (hereafter ISA(s)). In summary,
the strongest tendency is to specify the ISA in a way that
exposes, rather than abstracts over, microarchitectural details
of the naturally envisagable implementations. While this bias
seems natural, we argue that it was further encouraged, to
our detriment, by the RISC philosophy originally espoused
by academics throughout the 1980s. By contrast, the trend in
industrial implementations (with some notable exceptions) is
often to maintain the ISA as an abstraction and to conceal
performance-enhancing indirection behind that abstraction.
The tendency of over-specifying ISAs seems natural and
benign in retrospect, but can it be counteracted? Our ultimate
aim is to convince the reader that an ISA best suited for
both market factors and technical trends, both foreseeable
and otherwise, would maximize its flexibility and therefore
applicability by specifying as little as possible about its
implementation, and we should explore what benefits arise
when these familiar constraints are lifted.

Our presentation is divided in two parts, covering what some
might consider mis-steps in ISA design of the past, followed
by a discussion of what are perhaps some brighter alternatives.
This begins with a critical review of the original MIPS
architecture in section II, as it represents a very early attempt

to (re-)lower the abstraction level of the ISA. Section III
continues in the same vein but focuses on specific lamentable
decisions in other successful architectures, noting that they
tend to focus on low-level aspects of the machine.

A. ISAs: An interface is forever
To a first approximation, code never dies, but machine

implementations last but a few years. As a result, software
retains remnants of machine guts from ages past without an
expiration date. Consider Lisp’s car and cdr accessors of
the cons cell (pair) constructor, which get their names from
assembler macros that extracted the address and decrement
fields, respectively, of a memory word on the IBM 704. While
modern machines have abandoned such memory organizations,
this notation has sixty years of well-earned longevity at the
time of this writing, with no foreseeable end.

While machine interfaces are made low-level in order to
extract performance, the specific machines to which they refer
are constantly being improved, often obsoleting the interface
along with the implementation. While section III gives some
obvious examples, section IV presents the hypothesis that
certain often ignored design fixtures of modern ISAs belong
to this same category. The authors suspect this is due to a
misinterpretation of the RISC legacy, which championed low-
level interfaces like load/store memory architecture.

B. Towards a desirable “forever interface”
Time and time again, attempts to achieve performance

through machine-describing ISAs eventually lose to imple-
mentations that achieve comparable (or better) efficiency with
less effort. The present authors pose an alternate philosophy
of instruction set design: an ISA should serve the computa-
tions, not the machines. In wanting to describe computations
of all kinds, some computations find themselves suffering
from incompatibilities with the machine architecture. In the
penultimate section V the historical emphasis gives way to
an examination of a major problem facing the architecture
community today, and how our perspective provides direction
towards a solution. As we conclude in section VI, we hint at
the long term vision for this work: ISAs that break down the
division between the silos of CPU and GPU, between reuse-
optimized architecture and throughput architecture.

II. MIPS: MICROPROCESSOR WITHOUT INTERLOCKING
PIPELINE STAGES

We find the MIPS treatise by Hennessy, et al. [1] to
be representative of the philosophical thrust of the early



RISC movement. Nota bene, while RISC stands for Reduced
Instruction Set Computing, the movement was about more
than just reducing the instruction set. Its advocates wanted
to regain performance by being able to speak directly to the
microarchitectural structures on the chip, namely the individ-
ual pipeline units (not just ALUs) and registers, which was the
purpose of those reduced instructions. Such a machine would
need no microcode nor would it need hardware interlocks,
because compilers would automatically handle all of the
machine’s tricky aspects. While unsurprising in retrospect that
this approach didn’t pan out, we detail some of the reasons
below.

A. Pipeline interlocks

The MIPS originally had no pipeline interlocks and de-
pended on the software stack to properly avoid any incorrect
behaviors. This approach is untenable for many reasons, but
we will focus on microarchitectural complexity, security con-
cerns, and intellectual property protection. By contrast, today
any such code is part of the implementation-specific microcode
so its use is restricted to fully validated circumstances. We
consider the industrially adopted practice to be superior.

In order for MIPS machine code to perform microengine-
level coordination, it must have perfect knowledge of the tim-
ing of the machine. In fact, [1] describes a scheme that could
be likened to VLIW in control philosophy for how it statically
schedules machine resources, except that the machine was
so simple that the instructions were not very long. The
increased use of aggressive speculation made this approach
all but impossible, however. A deeply pipelined superscalar
machine with cache memories and dynamic branch prediction
can stall under many circumstances, so mainstream CPUs are
dynamically scheduled by necessity. (While a VLIW-style mi-
croarchitecture is not impossible, the known implementations
require very sophisticated translation layers, far more complex
than typical microcode [2]. Eschewing hardware interlocks
this way is certain to run afoul of the “no microcode” tenet
described in the next section.)

The original MIPS architecture’s ability to operate without
pipeline interlocks depended directly upon the machine code
being completely tuned for deep microarchitectural properties
of the implementation. This circumstance brings with it con-
cerns that certain code sequences would be unsafe, i.e., code
flaws could potentially lead to unrecoverable corruption or
crashes. In today’s security theater where an attacker can get a
browser to emit and run specific machine code sequences (con-
sider asm.js [3] or WebAssembly [4] plus RowHammer [5]
or Spectre [6]), such an approach is a non-starter. The mi-
croarchitecture and associated circuitry simply cannot depend
on software to maintain its own internal consistency; rather,
the ISA must attempt to be an impenetrable barrier between
the software and the underlying implementation regardless of
inputs (while the authors acknowledge that this barrier is more
likely to continue to be more of a “Maginot Line” [7] versus
a perfect defense).

Finally, most vendors have strong incentives to protect their
trade secrets. Exposing the deep details of a modern machine
to software runs counter to this goal. While the authors do
not advocate opaque designs such as Intel’s Management
Engine [8][9], neither can designs that are fully transparent
to software control be justified. The trend towards heavy
operating system-like micro-engines that run on cores is
worrisome in that they open up the potential for malware at
the µISA level. Consider for example the recent disclosure
that the microcode format and updating procedure on recent
AMD CPUs have been reverse-engineered [10], demonstrating
the potential for fascinating and frightening µISA malware.
The simple conclusion is that delegating pipeline interlocking
and related concerns to software is a non-starter. The micro-
engine’s operation must be internally and securely managed.

B. No microcode

The MIPS design explicitly gave software direct control
over the “micro-engine.” To adhere to this philosophy most
strongly, the binaries generated for one revision of the archi-
tecture could not necessarily be considered compatible with
the next.

We are careful to not assert that this is undesirable a priori,
but rather that it is a very impactful decision to make. During
that era, commodity compilers of the quality we currently
enjoy in the form of gcc [11] and LLVM [12] did not exist,
nor did a large body of commercially viable software freely
available in source code form. Demanding that programs be
compiled anew for every new version of the machine was
simply an untenable proposition, and even in today’s software
ecosystem it would face troublesome friction.

Consider by contrast long-lived ISAs whose vendors
have consciously focused on backwards compatibility: IBM’s
360/370 family and Intel’s x86 and x86-64. Maintaining the
interface carries market advantages (most notably the software
ecosystem that inevitably must be built around any ISA for it to
be successful), while new performance enhancing technologies
hide behind the ISA interface and further its viability. This
necessitates a separation between ISA and µISA and with
it some amount of microcode. We notice that this points
in exactly the opposite direction of the MIPS micro-engine
philosophy. What was intended by MIPS to be the only
layer of the micro-engine, is now simply the first layer of
indirection after the assembly language. To borrow words from
David J. Wheeler, “We can solve any problem by introducing
another level of indirection.” Micro-code is that second layer
of indirection, solving the problem of exposing a static layer
(ISA) that can’t easily be changed. The introduction of micro-
code is inevitable in any long lived architecture, no matter how
true to the original MIPS philosophy its designers intend to be.
Again, we place our vote with the accepted industry practice:
use of microcode is inevitable and carries many advantages.

So not only is microcode inevitable for correctness and
security reasons, it is also necessary for maintaining the ISA
interface across machine revisions.



C. RISC: a retrospective

It is quite revealing to carefully examine what was being
proposed under the RISC banner in 1981. It is common
today to hear sentiment such as “in microarchitecture RISC
won, but in ISAs CISC won,” supported by the observation
that today’s designs tend to have µISA back-ends processing
simple µ-instructions that seem to embody the RISC ideal.
To engage in such thinking unfairly allows a disconnection
between RISC’s hardware and software philosophies, as there
was no such separation. RISC’s goal of directly exposing the
hardware in the name of performance is a pattern that repeats
quite often [13][14][15]. Furthermore, the modern perspec-
tive discounts the extent to which the original MIPS design
concerns were not solved in the way originally advocated;
i.e. microarchitectures today bear little resemblance with this
MIPS work. RISC adherents championed simple ISAs with no
microcode, but in an ironic twist of fate, that design ethos is
now embodied in the microcode layer. This is why they are
given credit for microarchitecture, but as we have argued, the
microarchitecture proposed in this early work was not viable.
Considering the early days of RISC, perhaps a more accurate
statement would be that “RISC won the µISA”. What is
considered RISC microarchitecture was explored concurrently
by designers of both RISC and non-RISC ISAs.

III. REFLECTIONS ON MODERN MIS-STEPS

Regrettable mistakes in ISA come in many flavors, but one
common aspect is exposing the machine’s internal operations
to the interface. We first discuss two ways that ISAs have at-
tempted to make concessions for branch instructions. Next we
describe an implementation detail of an early Arm processor
that became a long-lived standard for backward compatibility.
Finally we reflect on Intel’s series of SIMD extensions.

A. Delay slots and branch hints

Branch instructions pose challenges of nightmarish diffi-
culty for computer architects. Branch delay slots and branch
hints are two ISA-exposed techniques intended to mitigate
such difficulties. Neither of these techniques are considered
appropriate any longer, as engineers found better solutions—
transparent ones, to be clear.

A branch delay slot refers to one or more instructions after
a branch which are still executed regardless of whether the
branch is taken. This gives the processor some extra work to
do when it would otherwise be waiting for the pipeline to refill.
The MIPS and SPARC architectures, among a few others,
employ the technique. This practice has been abandoned in
modern architectures as it is better handled by increased
aggressiveness and improved speculation in the processor
front-end.

Branch hints are annotations in the instruction stream that
indicate a branch’s expected bias. They could be encoded in
normal branch instructions or in no-ops or prefixes. Their in-
tent is to reduce front-end stalls due to branch mispredictions.
The useful life of this concept was similarly short: since condi-
tional branch predictors perform better than static predictions,

these branch hints are ignored in nearly all cases. Furthermore,
such hints may increase code size, as an example, it costs
1 byte on x86) and because the processor must decode the
instruction to respond to the hint, a small stall is unavoidable
for a cold taken branch. The best practice is to make the fall-
through code path the common case. For loop back-edges,
cold backwards branches are often predicted taken in modern
designs anyway. This way I$ resources are conserved and stalls
due to cold front-end components such as the BTB and branch
predictor are minimized. As further evidence, consider that
GCC’s response to branch hint intrinsics is to reorder code,
but not emit branch hints.

B. Arm ISA’s excepting instruction offsets

From at least version four of Arm’s 32-bit ISA, now dubbed
AArch32, when an exception is taken from user to supervisor
privilege, the PC at the time of the fault is stored in the
Link Register with an offset that depends on the type of
exception. How could such a design come about? A natural
hypothesis adopted by the present authors is that the initial
implementation of the architecture in fact applied no offset
at all; rather, the behavior was merely a timing artifact of
how much further ahead the fetch stage’s PC would be
when the exception was detected later in the pipeline. One
might say that exceptions were not precise in the original
architecture, but could be made precise with software—a very
RISC-like compromise! Over twenty years later, this imprecise
exceptions behavior still remains for backwards compatibility.
For exception behaviors introduced later, the Link Register
value is completely precise.

This is yet another example of an architecture exposing a
transient microarchitectural detail in the ISA. Unfortunately,
like so many such well-intentioned compromises made early
in the life of an ISA, it changed the trajectory by which
future versions of the ISA had to match, whether or not
the implementation congruence still existed, the probability
of which tends to only ever decrease with time. Despite its
minor severity, this quirk demonstrates the impact of choosing
an expedient engineering solution visible to the machine’s
interface: in all likelihood, the interface-level decision is
irreversible, but the next product iteration could take nearly
any desirable approach behind the interface.

C. Intel SIMD extensions

While the x86 ISA has many examples of abandoned,
vestigial features, its long history of SIMD extensions offers
a lesson of a different sort. In particular, consider the many
different ways one might encode integer addition of 32-bit
words: starting from a single scalar ADD instruction, the
PADDW instruction provided two-, four-, eight-, and sixteen-
wide integer addition in the subsequent MMX, SSE2, AVX,
and AVX-512 extensions, respectively.

Clearly the philosophy being demonstrated is similar to
that of RISC, with the ISA directly referring to specific
implementation details, such as the width of the vector unit
and a register file sized to store vectors of that length.



The Cray-1 architecture [16], by contrast, represents a
smoother evolutionary path, as it expresses vector computa-
tions of arbitrary length. A computation thus encoded needs
no re-encoding when a later implementation provides more
advanced capabilities, nor would said implementation need
any extensions to its decoding circuitry. We offer this as
an example of a weakness of the RISC approach, where
directly exposing the capabilities of the latest machine revision
seems very important in the short term, then often becomes
regrettable baggage for all parties involved.

IV. THE LOAD-STORE LEGACY

A. Architecture and microarchitecture

Over the last half-century, there have been many attempts
to redefine the relationship between architecture and microar-
chitecture. With the premise that the MIPS philosophy strikes
some middle ground, then the extremes are formed by the
likes of Transport Triggered Architecture (TTA) [13] and at
the other end of the spectrum the Register-less Architectures
(RLA) [17]. The TTA philosophy is that the programmer or
compiler can decide exactly what instructions go to which
functional units more efficiently than the microarchitecture
can. As an example, taken to the extreme, this means that
the instruction stream itself is devoid of arithmetic logic
unit (ALU) operations and consists solely of data movement
operations to locations that are the functional units. This
directly exposes the microarchitecture itself, making binaries
extremely non-portable. RLAs on the opposite end of the
scale often start with a RISC-like base and remove the
register moves. In theory, today’s high speed caches are close
to the speed of the register file. In a sense, the registers
themselves are simply another smaller cache that is managed
via compiler instructions which are load/store operators. The
idea of the RLA is that instead of using load-to-register before
computation, use the memory address itself directly (with
appropriate concessions made for things like stack pointers,
etc.). While demonstrating some performance advantages over
register architectures, the potential for variable length instruc-
tion encoding and the resulting size of the binary (large), the
concept of RLA has yet to become mainstream.

B. Memory-to-memory architecture

Patterson and Hennessy [18] state that an ISA should have a
small number of operands that reference fast register memory.
The first argument given for limiting the number of registers is
the ability to clock these memories high enough to be effective.
Secondly the authors reference the nice power of two encoding
that 32 registers provide within the encoding space. This, how-
ever, hasn’t stopped architectures from increasing the number
of architected registers (as high as 128 for Itanium [19]). Many
have advocated for so called “registerless” architectures which
ostensibly encode memory addresses as operands for each
instruction. The authors of this paper chose the phrase “so
called” because most implementations of “registerless” archi-
tectures still employ fast registers, they simply hide them from
the exposed programmer interface, choosing instead to manage

the register space within the microarchitecture. If the register
mapping problem [20] is viewed as simply solving a temporal
encoding efficiency problem, then the memory-to-memory
architectures can be viewed as having infinite registers (mov-
ing the encoding overhead to the microarchitecture) whereas
the register-memory architectures can be viewed as having a
very limited fast memory space extended by main memory
(essentially a scratch-pad memory optimized by the compiler).
The consequence of encoding a larger number of registers,
as large as the addressable memory space (as in memory-to-
memory architectures) is that the instruction encoding must
be large as well to accommodate the memory addresses as
operands. Conversely, these architectures can eliminate explicit
load and store instructions which has the effect of reducing the
overall number of needed instructions. Memory-to-memory
architectures [21], such as PERL [17], embody this type of
“registerless” system, however, to date memory-to-memory
architectures have yet to catch on outside of embedded systems
(see ATmega16 as an example [22]). A potential advantage of
memory-to-memory architecture is that it enables architects to
innovate around the register management while removing the
long term limitations that fixing the number of registers within
the ISA can have (i.e. once it is in the ISA, it is essentially
permanent).

V. RAISING THE LEVEL OF ABSTRACTION

A. On tasting like microarchitecture

What does it mean to, as we assert tongue-in-cheek in the
title, “taste like” microarchitecture? As we have described up
to this point, the RISC philosophy espouses an ISA where
fundamental abstractions are shaped to match the outlines of
the microarchitecture. Adherence to this motivation continues
to the present day. Therefore the hardware-software interface
has a flavor, a taste, of microarchitecture. Is this so bad? In
a word, yes; we claim that this emphasis is simultaneously
antiquated, at odds with solutions to real problems facing our
field, and unnecessary. When considering the period of rapid
evolution that microarchitecture is about to face with the end of
lithography scaling, abstractions that are free from underlying
microarchitectural influence are critical to minimizing future
disruption.

B. Killer microseconds

The killer microsecond problem [23] is the observation that
decreasing I/O wait times are fast approaching the latency of
a context switch, thereby challenging the efficacy of time-
sharing itself, a technique used effectively for over a half cen-
tury [24]. For many decades, these delays were millisecond-
scale while the context switch cost was microsecond-scale.
How might the taste of an architecture be relevant to this
problem?

It is helpful to examine the activities undertaken by the
system on a context switch and how they are accomplished.
In a modern time-sharing system like Linux, the flow of
operations is as follows: the privilege level is changed to
supervisor, the user thread’s context (namely its architectural



state, i.e. the values stored in the register file(s)) is stored
to memory, a scheduler decides what thread to run next, the
context-swapping procedure is repeated to restore the context
of the chosen thread, and the privilege level is returned to user
level.

For clarity, we now point out the respective actors in the
previous paragraph, which was intentionally written in the
passive voice. Since our machines inherit the load-store legacy,
software, specifically the operating system, performs the fun-
damental register-copying task of context switching. In fact,
the ISA is defined such that the machine explicitly exists as a
separate entity that programs must be multiplexed in and out
of, rather than the machine model itself being defined as vir-
tual, or even self-virtualizing and self-multiplexing. Therefore
we have left software with the responsibility of encapsulating
independent computations into processes or virtual machines.
In the latter case, some architectural mitigations have been
implemented, but such solutions still leave much to be desired.

C. An encouraging direction: stateless ISAs

As we alluded to in section IV, the load-store legacy and
its register-centric machine model have alternatives worthy of
further examination. We will briefly describe a collection of
ideas in the direction of “registerless” architectures. To be
clear, we are interested primarily in the interface and how
it implicitly dictates implementations; we are not also pro-
claiming the obsolescence of register-based microarchitecture,
as most techniques there are more generally applicable.

Suppose we took the approach of mapping the register
file to memory, following Oehmke’s work on virtual context
architecture [25][26]. What we now find is that we have only
gone halfway: while the register state has an architecturally
defined backing store with a natural, hardware accelerate-able
scheme for context switching, we also unnecessarily separated
the natural working set of the program into two places in
memory, namely the register backing store and the stack.
It is not clear that this separation provides any real value
when considering the envisioned techniques for a stack-centric
“registerless” architecture (note that we do not consider this a
stack architecture, but rather a memory-memory architecture
with practical operand encoding).

One of the primary benefits of register operand encodings
is the clear dataflow relationship between producers and
consumers; only memory operations are subject to complex
disambiguation schemes, while instructions with only register
operands can proceed directly through register renaming to
get their physical register/dataflow tag. We will explore some
reasons why this advantage is likely overrated.

For maintaining the performance expectations established
by modern CPU architectures, we will focus on the abil-
ity to connect producers with consumers back-to-back, or
in consecutive clock cycles. This is not a feature provided
by registers, whether architectural or microarchitectural, but
rather an effective dataflow tagging scheme, a bypass network,
and one or more schedulers. We expect that the same is no
less achievable with only memory operands, albeit with the

burden of encoding and mapping dataflow via tags/registers
now squarely in the realm of microarchitecture.

Starting in the 1990’s, a series of studies has showed
that memory-borne dataflow is quite predictable: Franklin and
Sohi’s work in the context of Multiscalar [27], Moshovos and
Sohi’s [28] and Tyson and Austin’s [29] simultaneously pub-
lished studies on memory renaming, Chrysos and Emer’s store
sets [30], Sha, Martin, and Roth’s Store Queue Index Predic-
tion (SQIP) proposal [31], and others. From this we conclude
that memory renaming is a promising approach to achieve
equivalent dataflow tagging. Just as static solutions like branch
hints were obviated by dynamic prediction, perhaps register
encodings will eventually see a similar obsolescence.

But what should we expect of the greatly increased memory
references that would normally be register operands? Here we
gently note that register operands must be “well-behaved” by
definition; if it was possible for the data to be aliased through
memory, the compiler would be forced to not persist the value
in a register in the first place. So in effect, by encoding such
operands via (e.g.) stack offsets, we would only increase the
overall predictability of memory dependencies, and most of
these dependencies would be obvious through known methods.

We call the ultimate endpoint of this approach a stateless
ISA, i.e. an ISA defined strictly in terms of state transitions
in the system memory, with the computational device having
no external state of its own. As such an architecture can
use cache coherence to lay claim to a subset of memory
and realize these transitions using the highest performance
methods possible, the same aspect also directly implies that
task switching is simply a matter of caching. This is promising
for far more than just the killer microsecond problem. As we
envision future heterogeneous systems out of necessity, the
cost in time and energy of coordinating computations across
various computational devices has a first order impact on the
value derived from their differentiated attributes. The killer
microsecond problem is just one simple example of how the
overhead of context switching represents a sort of fundamental
constant; lowering this constant will impact other aspects of
system efficiency.

D. The hyper-taste

Our main thrust has been to argue that ISAs have an
outmoded emphasis on microarchitectural concerns, noting
that a great many microarchitectural techniques have been
devised to transparently solve these problems to great effect.
We should instead consider how to be more helpful to the con-
sumers of our interface. Looking upwards in the system stack,
the first immediate consumers of the architecture abstraction
are hypervisors, virtual machine monitors, microkernels, and
operating systems. How might we provide acceleration of
their operations? What might an architecture with a taste
of hypervisor consist of? How might we provide easy-to-
use heterogeneous computation without forcing these software
layers to continually adapt to our innovations?



VI. CONCLUSION

Many ideas proposed for the original MIPS architecture
did not catch on, and we argue that overall, the seminal
MIPS embodiment of the RISC philosophy provides many
examples of what not to do in ISA design. However, it
was not just the specific techniques that were flawed, but
rather we posit that the real flaw is viewing hardware details
exposed to the ISA as beneficial rather than, as we have
argued, disadvantageous. From this perspective, practically all
known ISAs have exposed implementation details to some
degree, but the RISC philosophy’s emphasis on exposing the
microarchitecture in the name of performance sacrifices the
future for the present.

Another perspective is that leaving a task to software is
often a sound technical decision and conveniently allows
further explorations on different solutions. Once a great deal
of investment has been made in the software, however, it
has proved difficult to change the interface despite potential
advantages.

The lasting legacies of the RISC movement are simpler
instructions intended to map directly onto hardware and load-
store memory architecture. These attributes are appropriate
for the microcode and µISA layer, but are not necessarily
the right level of abstraction for a widely targetable ISA. We
instead advocate an investigation into ISAs that say as little as
possible, ideally nothing, about their implementation. This re-
partitioning of responsibilities between hardware and software
would provide not only maximum flexibility over time, but
would allow more diversity of implementations, supporting
our imminent and foreseeable needs for heterogeneous com-
pute [32] in the post-Moore, post-Dennard era.

ACKNOWLEDGMENT

The authors would like to thank Reid McKenzie, Chad
Wellington, Akanksha Jain, and the anonymous reviewers for
their detailed and insightful feedback.

REFERENCES

[1] J. Hennessy, N. Jouppi, F. Baskett, and J. Gill, “MIPS: a VLSI processor
architecture,” in VLSI Systems and Computations. Springer, 1981, pp.
337–346.

[2] J. C. Dehnert, B. K. Grant, J. P. Banning, R. Johnson, T. Kistler,
A. Klaiber, and J. Mattson, “The transmeta code morphing software:
using speculation, recovery, and adaptive retranslation to address real-
life challenges,” in Proceedings of the International Symposium on Code
Generation and Optimization. IEEE Computer Society, 2003, pp. 15–
24.

[3] A. Z. D. Herman, L. Wagner, and A. Zakai, “asm.js–working draft–18
august 2014,” 2014.

[4] WebAssembly. [Online]. Available: webassembly.org
[5] M. Seaborn and T. Dullien, “Exploiting the dram rowhammer bug to

gain kernel privileges,” 2015.
[6] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,

S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks:
Exploiting speculative execution,” ArXiv e-prints, Jan. 2018.

[7] W. Allcorn, The Maginot Line 1928–45. Bloomsbury Publishing, 2012.
[8] H. T. Datenschutz and D. Pataky, “Intel management engine,” 2017.
[9] M. Ermolov and M. Goryachy, “How to hack a turned-off computer,

or running unsigned code in intel management engine,” in Black Hat
Europe 2017.

[10] P. Koppe, B. Kollenda, M. Fyrbiak, C. Kison, R. Gawlik, C. Paar,
and T. Holz, “Reverse engineering x86 processor microcode,” in 26th
USENIX Security Symposium, 2017.

[11] Gcc, the gnu compiler collection. [Online]. Available: gcc.gnu.org
[12] The llvm compiler infrastructure. [Online]. Available: llvm.org
[13] H. Corporaal, “Design of transport triggered architectures,” in Proceed-

ings of 4th Great Lakes Symposium on VLSI, 1994, pp. 130–135.
[14] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim,

M. Frank, P. Finch, R. Barua et al., “Baring it all to software: Raw
machines,” Computer, vol. 30, no. 9, pp. 86–93, 1997.

[15] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, N. Ran-
ganathan, D. Burger, S. W. Keckler, R. G. McDonald, and C. R.
Moore, “TRIPS: A polymorphous architecture for exploiting ILP, TLP,
and DLP,” ACM Transactions on Architecture and Code Optimization
(TACO), vol. 1, no. 1, pp. 62–93, 2004.

[16] R. M. Russell, “The CRAY-1 computer system,” Communications of the
ACM, vol. 21, no. 1, pp. 63–72, 1978.

[17] P. Suresh and R. Moona, “Perl-a registerless architecture,” pp. 33–40,
Dec 1998.

[18] D. A. Patterson and J. L. Hennessy, Computer Organization & Design:
The Hardware/Software Interface, Fourth Edition. Morgan Kaufmann
Publishers, Inc.

[19] S. D. Naffziger, G. Colon-Bonet, T. Fischer, R. Riedlinger, T. J.
Sullivan, and T. Grutkowski, “The implementation of the Itanium 2
microprocessor,” IEEE Journal of Solid-State Circuits, vol. 37, no. 11,
pp. 1448–1460, 2002.

[20] G. J. Chaitin, “Register allocation & spilling via graph coloring,” in
ACM Sigplan Notices, vol. 17, no. 6. ACM, 1982, pp. 98–105.

[21] G. J. Myers, “The case against stack-oriented instruction sets,”
SIGARCH Comput. Archit. News, 1977.

[22] 8-bit avr microcontroller with 16k bytes in-system programmable flash.
http://www.atmel.com/images/doc2466.pdf. Accessed December 2017.

[23] L. Barroso, M. Marty, D. Patterson, and P. Ranganathan, “Attack of the
killer microseconds,” Commun. ACM, vol. 60, no. 4, pp. 48–54, Mar.
2017.

[24] F. J. Corbató, M. Merwin-Daggett, and R. C. Daley, “An experimental
time-sharing system,” in Proceedings of the May 1-3, 1962, Spring Joint
Computer Conference, 1962, pp. 335–344.

[25] D. W. Oehmke, N. L. Binkert, T. Mudge, and S. K. Reinhardt, “How to
fake 1000 registers,” in Proceedings of the 38th annual IEEE/ACM In-
ternational Symposium on Microarchitecture. IEEE Computer Society,
2005, pp. 7–18.

[26] D. W. Oehmke, Virtualizing register context. University of Michigan,
2005.

[27] M. Franklin and G. S. Sohi, “ARB: a hardware mechanism for dynamic
reordering of memory references,” IEEE Transactions on Computers,
vol. 45, no. 5, pp. 552–571, May 1996.

[28] A. Moshovos and G. S. Sohi, “Streamlining inter-operation memory
communication via data dependence prediction,” in Proceedings of the
30th Annual ACM/IEEE International Symposium on Microarchitecture,
ser. MICRO 30, 1997, pp. 235–245.

[29] G. S. Tyson and T. M. Austin, “Improving the accuracy and performance
of memory communication through renaming,” in Proceedings of the
30th Annual ACM/IEEE International Symposium on Microarchitecture,
ser. MICRO 30, 1997, pp. 218–227.

[30] G. Z. Chrysos and J. S. Emer, “Memory dependence prediction using
store sets,” in Proceedings of the 25th Annual International Symposium
on Computer Architecture, 1998, pp. 142–153.

[31] T. Sha, M. M. K. Martin, and A. Roth, “Scalable store-load forwarding
via store queue index prediction,” in Proceedings of the 38th Annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO
38, 2005, pp. 159–170.

[32] E. S. Chung, P. A. Milder, J. C. Hoe, and K. Mai, “Single-chip hetero-
geneous computing: Does the future include custom logic, FPGAs, and
GPGPUs?” in Proceedings of the 43rd Annual IEEE/ACM International
Symposium on Microarchitecture, 2010, pp. 225–236.


