
A Multi-component Branch Predictor Design for

Low Resource Budget Processors

Moumita Das, Jadavpur University, Kolkata

Ansuman Banerjee, Indian Statistical Institute, Kolkata

Bhaskar Sardar, Jadavpur University, Kolkata

WP3 2018

Introduction

 Branch Predictor: an important component of modern processors

■ Predicts branch direction at the fetch stage of the pipeline

■ Saves clock cycles as well as energy for deep pipelines

■ On a misprediction:

● Pipeline flushed and new instructions brought in

● Leads to loss of cycles and energy

 Efficient and accurate predictor design – an always important problem in

computer architecture community

■ Prediction strategies in modern processors have reached a fair amount of

sophistication over decades of research

● Bimodal, Gshare, Gag, Perceptron, TAGE and its variants

■ Achieving last mile in prediction accuracy is still important

■ With new workloads, new challenges being envisioned

WP3 2018

Motivation behind this research

 A single predictor component may not be well suited for all branches in a program

■ Branches ill-suited for a certain branch prediction policy often have better

performance when run with another predictor

■ Multicomponent predictor design

 Multicomponent predictor designs in literature

■ Best predictor for each individual branch

■ Separate prediction history storage tables for each predictor

■ Popular Examples: Tournament predictor, Overriding predictor

WP3 2018

Contributions of this work

 A new multicomponent predictor design

■ Use of multiple predictor components synergistically instead of a single

one for prediction at runtime for better prediction accuracy

■ Does not necessarily switch to the best predictor for each branch

 Ensuring a low storage budget design

■ Sharing predictor tables between multiple predictor components

■ A heuristic to minimize inter-predictor interference

 Experimental results on SPEC 2006

■ Accuracy, energy and execution cycle

WP3 2018

A multi-component predictor design

■ A combination of 3 components: GShare, Gag and Bimodal predictors

● Differ in their indexing functions

■ Each predictor needs two main storage elements:

● Branch History Register (BHR)

 A shift register

 Stores the branch outcomes of the most recent n branches

 A 1 is recorded for a taken branch, 0 recorded for a not taken branch

● Pattern History Table (PHT)

 Stores the prediction information for all branches of a program

 Contains a two bit saturating counter : MSB gives the final prediction

WP3 2018

Going for a low storage budget design

■ Classical multi-component predictor design:

● Prediction accuracy improvement over single components

● Individual PHTs for individual predictor components

■ Our proposal for low storage budget: a single shared PHT

● Leads to prediction accuracy degradation with respect to single components

Accuracy comparison : shared vs individual PHT implementation

WP3 2018

Addressing the accuracy degradation

 Inter predictor interference

■ Information stored by one predictor accessed and modified by others

■ Increase in Misprediction

 Too many instances of predictor switching

■ Switching between predictors to employ the best predictor for each branch

does not necessarily help

 Question: Can we find a predictor usage sequence that minimizes mispredictions,

and therefore, maximizes accuracy?

WP3 2018

Complexity of the solution space

 Simulate all sequences of possible combinations of all branches for all predictors

 Example: 4 predictors and 4 branches

■ 256 combinations

■ Infeasible for program with more branches

Predictor Sequence Tree

WP3 2018

Our multi-component predictor strategy

 Attempts to reduce the instances of inter-predictor interference

 Does not necessarily switch predictors at each branch

■ For each branch, evaluates the benefit of changing the predictor from the one

currently being used

■ Changes the current predictor only if accuracy improvement is significant

Algorithm /* Aq denotes the prediction accuracy of predictor q */

R = predictor with maximum average prediction accuracy for a program

Initialize currentPredictor C = R

For each branch i in the program do

Let Pi be the best predictor if available, or else Pi =R

if |Ac-APi | < ϴ then

select C for prediction of i

else

select Pi for prediction of i

update C = Pi
End Algorithm

WP3 2018

Discussion on our proposal

 Can still manage with a single PHT shared between the components

 Accuracy degradation is not as significant as in the naive shared design

 Controls interference using lesser number of predictors

■ Total number of interfering predictors is usually less than the classical

scheme

■ The worst case number of predictor switches in our case is upper

bounded by the number of switches in a classical scheme

WP3 2018

Experimental setup

 Tejas architectural simulator

 SPEC 2006 benchmark programs

 Shared PHT implementation

■ 32 KB PHT size – shared by three predictors

 Compared the performance benefits of our design with

■ A naïve shared PHT implementation (without our heuristic)

■ Split PHT implementation, with16 KB PHT for each predictor

WP3 2018

Comparing the number of interferences

 % of interferences in the naive shared implementation versus ours

 Achieved reduction in all cases

WP3 2018

Prediction Accuracy Comparison

 Average accuracy improvement - around 2%-3%

WP3 2018

Energy Comparison

 Improvement in execution time over a naive shared PHT implementation

 Improvement recorded over a SPLIT table implementation

WP3 2018

Execution Time Comparison

 Improvement in execution time over a naive shared PHT implementation

 Improvement recorded over a SPLIT table implementation

WP3 2018

Comments on our approach

 Leads to improvement in accuracy, energy and execution time

 Utilizes a static profile based selection scheme to identify and record the best

predictor for each branch

■ Need to store this information for use at execution time

■ Decision to switch done at execution time

 Attempts to minimize negative interference

■ Benefits of positive interference lost as well

 Can implement this at run-time, switching at phases

■ Can keep track of best predictor information as execution progresses

Thank You !

