
A Multi-component Branch Predictor Design for
Low Resource Budget Processors

Moumita Das1,2 Ansuman Banerjee1 Bhaskar Sardar 2

1 Indian Statistical Institute, India 2 Jadavpur University, India

Abstract—In this paper, we study the problem of designing
branch predictors for an embedded processor with low resource
budget. This is quite significant in the context of embedded
systems or edge devices, which are being increasingly used today
as compute nodes in the context of edge and fog computing.
A branch predictor forms a crucial component of any modern
processor, and we show that a multi-component predictor is the
best for achieving high accuracy of branch prediction. We first
examine a multi-component predictor design where the individual
predictor components are made to share the predictor table
structures. Our experiments reveal that this sharing often leads
to a loss of prediction accuracy due to the extensive interference
between the predictors on the shared data structures they operate
on. We propose a simple modification to contemporary multi-
component predictor designs to improve accuracy. We present
our findings on the SPEC 2006 benchmarks.

I. INTRODUCTION

In modern pipelined processors, a branch predictor is em-
ployed in the fetch stage to predict the direction of a branch
instruction so that the normal flow of a pipeline can function
and a new instruction can be fetched every cycle. However, a
misprediction leads to wastage of effort and loss of compute
cycles, since the entire pipeline has to be flushed and new
instructions need to be brought in. Embedded processors with
pipelines face a severe difficulty, since mispredictions have a
toll on energy consumption, due to the extra overhead needed
for restoring the execution to the correct path by flushing the
pipeline and fetching new instructions from the alternate path
on a misprediction. Evidently, efficient prediction policy de-
sign has always remained an important problem for researchers
in computer architecture [1] [4] [6] [9] [15] [16]. In this paper,
we study the predictor design problem for low resource budget
processors in embedded computing. We show that it is possible
to reach significant prediction efficiency while restricting to
low storage. We believe our work has an important application
in resource constrained embedded computing elements.

Modern pipelined processors today have quite efficient
implementations of multiple predictors, with a reasonably high
level of prediction accuracy through widely varying algorithms
for learning branch direction patterns. These predictors typi-
cally use history tables to store the direction histories of the
executing branches in a program. This history information is
used to learn the branch direction patterns, and later used while
making a prediction for a specific branch. An important obser-
vation [6] in predictor design literature has been the fact that
different predictors perform differently on different branches
in terms of the misprediction metric, in other words, branches

which are ill-suited for a certain branch prediction policy often
have better performance when run with another predictor. A
single predictor component, therefore, may not be well suited
for all branches in a program, thereby necessitating the idea of
hybrid branch prediction. In this work, we study the problem
of designing multicomponent hybrid prediction techniques for
resource constrained environments. In particular, we explore if
multiple predictors can be made to share the same prediction
history table, thereby saving storage.

Our experimental findings on employing a multicomponent
hybrid predictor with individual predictor components sharing
the same predictor table on the SPEC 2006 benchmarks [7] re-
vealed an interesting finding – the accuracy gain expected with
the hybrid scheme is most often not achieved. This happens
due to extensive interference on the shared predictor table, due
to frequent switching between the predictors. The prediction
information of one predictor is overwritten by another pre-
dictor during its prediction. This negative interference often
leads to an incorrect direction for prediction, and therefore,
accuracy degradation. In this paper, we propose a heuristic that
attempts to improve a classical hybrid prediction mechanism
by minimizing the number of context switches to different
predictor components, with an objective of interference re-
duction. We show results of using our heuristic on top of the
shared table implementation. Our heuristic attempts to control
the amount of predictor interference by controlling the number
of instances of new predictors being employed for prediction.
We show an average prediction accuracy improvement of 3-
4% on the SPEC 2006 benchmarks.

This paper is organized as follows. Section II presents
a discussion on the background of the different predictor
designs. Section III presents a motivating use-case to illustrate
the problem of interference witnessed in multi-component
predictor designs. Section IV presents a detailed analysis of the
complete solution space of multi-component predictor designs,
along with our proposal. Section V presents experimental
results, while Section VII concludes this discussion.

II. BACKGROUND

Classical research on branch prediction has led to two different
classes of predictors based on the program life cycle they
operate at, namely (a) static predictors [17] [26], which work
before the program is in actual execution, and (b) dynamic pre-
dictors [5] [9] [14], which reside inside the processor and are
employed at run-time. Static prediction techniques typically
aim at designing improved prediction strategies that either use

efficient program analysis [3] [17] to design branch prediction
hints (often, using hint bits in the program executable) to
be used at run time [24], or use execution profiling to learn
branch directions [18]. Dynamic predictors, on the other hand,
maintain and manipulate efficient prediction policies at run-
time when the program is in actual execution. Evidently,
dynamic policies are more effective, since they work when
the program is in actual execution, something which is hard to
mimic for their static counterparts. Indeed, modern pipelined
processors today have quite efficient implementations of mul-
tiple dynamic predictors working in unison, with a reason-
ably high level of prediction accuracy and varying energy
footprints. Some of the popular dynamic predictors include
Bimodal, GAg, GShare, PAp [14], Perceptron [10], TAGE [23]
its variants [20] [21]. Another orthogonal classification of
dynamic predictors is based on the information that they
use about other branches for predicting a specific branch at
run-time. A local dynamic predictor (e.g. PAp) uses history
information only about the branch under consideration for
its current prediction, while a global history-based dynamic
predictor (e.g. Perceptron) takes into account the direction
histories of the preceding branches in addition to the present
one while making a prediction for a specific branch. The
history information has to be stored and manipulated upon
inside a processor, thereby motivating researchers to look at
energy and space efficient designs for these predictor tables.

Multicomponent hybrid predictors with multiple predictor
components, with varying algorithms, have been well stud-
ied in the literature, with a number of design strategies,
attempting to improve prediction accuracy and power con-
sumption [1] [2] [4] [8] [9] [15] [16]. A single predictor
design uses a single predictor for all branches in a program
during execution. A hybrid predictor uses multiple compo-
nents and for each branch, it uses the best predictor that
provides maximum prediction accuracy and leads to minimum
misprediction for that branch. Evidently, there is an increase
in branch specific prediction accuracy and overall, prediction
accuracy as well. This best predictor selection can be done
statically (based on the static profiling step) [4] or dynamically
(based on information recorded at runtime). The Tournament
predictor [12], maintains multiple predictor components at
run-time, queries each component for their prediction for
each branch, and finally selects the best predictor to use,
based on past performance of these. Internally, these predictors
use a choice predictor component that maintains a running
counter to keep track of each predictor’s performance for
each branch and overall, till that point, based on which, it
decides whose prediction to go forward with. The Overriding
predictor [11] [22] usually comprises of a combination of low
response time (and usually, less accurate) and high response
time (and possibly more accurate) predictors. These predictors
typically start off with the prediction of a low response time
predictor, and overrides the decision, in case the prediction
from the high response time and expected to be more accu-
rate component, differs from the former. All this is done at
execution time.

In this work, we use a multi-component hybrid predictor
design that includes GAg, GShare and Bimodal predictors.
These predictors [14] use two main data structures - a Pattern

Fig. 1: Internal Architecture of a Branch Predictor

History Table (PHT) and Branch History Register (BHR) as
shown in Figure 1. Here, BHR is a n bit shift register that
contains the branch outcomes of the most recent n branches.
In BHR, a 1 is recorded for a taken branch for a taken branch,
and a 0 is recorded for the not taken branch. PHT stores the
prediction information for all branches of a program. Each
PHT entry contains a two bit saturating counter, the MSB
of that counter gives the final prediction. When a branch
condition gets resolved, the states of the two bit counter
and the BHR content are updated with the actual branch
outcome. The indexing functions used by the predictors to
access the prediction corresponding to a branch as stored
in the associated PHT entry are different for each predictor
discussed here. GAg uses BHR to index the PHT, whereas
GShare uses an exclusive-OR of the branch address and the
BHR to index the PHT. The Bimodal predictor uses only
the Program Counter (PC) value to access the PHT entry, as
shown in Figure 1. Different predictors use different indexing
functions, to access the PHT. The indexing function reflects
the intrinsic dependence of a branch, which may be entirely
on itself (local dependence), on preceding branches (global) or
a mix of them. The indexing function is appropriately selected
to include combinations of the required elements, usually, the
PC, local history and global history [14].

III. PROBLEM OVERVIEW

In this section, we illustrate an overview of the interfer-
ence problem on a fragment of the mcf program of the
SPEC2006 [7] benchmark, as shown in Figure 2. All figures
and tables used here were generated by running mcf with
different predictors on a small framework designed on top
of the Tejas [19] architectural simulator. We first explain the
performance of GAg and GShare [14].

Table I presents the misprediction rate obtained, averaged
over multiple simulation runs on the standard simulation data
provided as part of the benchmarks, for 7 branches of mcf
shown in Figure 2 when a single dynamic predictor is used
for branch prediction. GAg provides lowest misprediction rate
for branches 1, 2, 4 and 6, whereas GShare provides the same
for branches 3, 5 and 7. Quite evidently, the misprediction
rate / prediction accuracy for a particular branch varies for
different predictors which substantiates the fact that no single
predictor performs best for all the branches. This motivates

long read_min(network_t *net)
{
...
if((in = fopen(net->inputfile, "r")) == NULL)

//branch 1
return -1;

... /*Non-branch statements*/
if(sscanf(instring, "%ld %ld", &t, &h) != 2)

//branch 2
return -1;

... /*Non-branch statements*/
if(net->n_trips <= MAX_NB_TRIPS_FOR_SMALL_NET)

//branch 3
{

net->max_m = net->m;
net->max_new_m = MAX_NEW_ARCS_SMALL_NET;

}
... /*Non-branch statements*/
if(!(net->nodes && net->arcs && net->dummy_arcs))

//branch 4, 5,6
{

printf("read_min(): not enough memory\n");
getfree(net);
return -1;

}
... /*Non-branch statements*/
if(sscanf(instring, "%ld %ld", &t, &h) != 2 || t > h)

//branch 7
return -1;

... /*Non-branch statements*/

}

Fig. 2: Program P: A fragment of mcf

use of a hybrid predictor (HP). For each branch, HP selects
the predictor with the lowest misprediction rate / maximum
prediction accuracy (we call it the best predictor) for that
branch, as obtained from Table I. The last column of this table
presents the predictor selected for each branch. HP switches
to a different predictor when the current active predictor is
not the best for that branch. As an example, HP selects GAg
for branch 6 and switches to GShare for branch 7. Figure
4 presents the prediction accuracy degradation for shared
PHT table implementation with respect to GAg, GShare and
Bimodal predictors.

Branch Branch BHR Misprediction rate(%) Predictor
Address Pattern GShare GAg Hybrid Invoked (HP)

Branch1 401999 110101010 12.0 10.0 10.0 GAg
Branch2 4019d6 101010101 7.0 6.0 6.0 GAg
Branch3 401a17 010101010 3.6 4.0 10.0 GShare
Branch4 401a91 101010101 11.0 10.0 15.0 GAg
Branch5 401a9a 010101011 0.10 3.0 0.10 GShare
Branch6 401aa3 101010111 10.3 10.0 10.0 GAg
Branch7 401cd9 010101110 2.0 5.0 7.0 GShare

TABLE I: Branch profile for mcf program branches

We then experimented with a single PHT to be used by
both GShare and GAg, as summarized in Figure 3. Table I
Column 6 shows the result for the 7 branches run with a
hybrid predictor that combined GShare and GAg together. As
observed, there is a loss in prediction accuracy in some cases
due to the interference between predictors.

We present interference statistics on some SPEC 2006
benchmarks in Table II. For a hybrid predictor with a shared
32KB PHT, Column 2 shows the percentage of entries suffer-

Fig. 3: Predictor table interference between two predictors

ing from interference (access and modification by the different
components) with respect to all PHT accesses. Figure 4 shows
the difference in average prediction accuracy between three
single stream predictors (GAg, GShare and Bimodal) and the
shared table hybrid predictor implementation. It is seen, for
most of the cases the bars are in the positive direction, i.e.
there is an accuracy fall with the shared implementation. These
observations motivated us to address this interference.

Fig. 4: Accuracy comparison: hybrid and single predictors

IV. PROPOSED SOLUTION

In this section, we present our proposal in greater detail. We
begin by illustrating the solution complexity of the problem
space, from the perspective of designing a hybrid predictor
scheme that can maximize the overall end-to-end prediction
accuracy for a given program. For ease of illustration and
simplicity of explanation, we consider a hybrid predictor that
combines 4 individual predictors: GShare (P1), GAg (P2),
TAGE (P3) and PAp (P4) together and a program P with
4 branches: Branch1, Branch2, Branch3 and Branch4 (in this
order of their occurrence in P), any of which can be predicted
using any of the 4 predictors as shown in Figure 5.

Figure 5 shows a level-ordered 4-ary tree that shows all
possible predictor combinations for all the four branches in
the way the branches are ordered in the original program. In
this case, this tree has 4 levels, where each level represents an
individual branch of this program (and the different predictor

Fig. 5: Predictor Sequence Tree

choices for that branch) and 256 different paths to represent
256 different predictor sequences. Intuitively, this tree captures
all the possible ways a hybrid predictor scheme can be
designed using individual predictors. The path marked in red
is the predictor sequence generated by the traditional hybrid
predictor which works by selecting the best predictor for every
branch based on prediction accuracy for that branch.

As illustrated in the previous section, a hybrid scheme with
shared PHT table, that picks the best predictor for each branch
is not necessarily the best choice in terms of overall prediction
accuracy for the entire program, and hence, the need for
this exhaustive enumeration. A hybrid predictor should ideally
explore all the paths of this tree to get all possible predictor
sequences, compute the average prediction accuracy of each
path and choose the best that maximizes it. Thus, all possible
interleaving of the predictors (and the resulting interferences)
would be automatically considered, and a choice can be made
that minimizes the negative interference as much as possible,
while also maximizing prediction accuracy.The exhaustive
enumeration described above is however, beyond scope for any
realistic implementation. The following subsection presents
our proposal for interference reduction.

Selective Switching based Interference Control

We propose to reduce predictor interference using selective
switching as described in Algorithm 1 below. The philoso-
phy of Algorithm1 is to find the best predictor R that has
the best overall prediction accuracy for a program and the
best predictor Pi for each branch i, obtained from previous
simulation runs or earlier phase of execution. We start with
R as the current predictor C. Let AC denote the prediction
accuracy of C, and APi likewise denote the prediction accuracy
of predictor Pi. We elaborate on our choice of these in the
following section. For each branch, if the best predictor is not
C, it checks whether the prediction accuracies of the current
predictor and Pi differ beyond a threshold value (say θ). If this
condition is true, it selects that best predictor for prediction
and updates the current predictor accordingly. Otherwise, it
continues with the predictor C for prediction.

Consider the mcf program (Figure 2) and a threshold of
0.5. Let us assume GAg is the overall best predictor to start
with. From the information given in Table I, for branch 1, the

ALGORITHM 1: Selective Switching

begin
Find the predictor R with maximum prediction accuracy
for a program Q
Initialize currentPredictor C = R
for each branch i in Q do

Let Pi be its best predictor if available, or else Pi = R.
if |AC −APi | < θ then

Select C for prediction of i
else

Select Pi for prediction of i
Update C = Pi

end

best predictor is the same, and we continue with GAg as the
current best predictor and use it for prediction of this branch.
A similar thing happens for branch 2 as well. For branch 3,
the best predictor is GShare, however the gain in prediction
accuracy is less than our threshold. Hence, we continue
with GAg for prediction. For branch 4, the best predictor
is GAg as well. For branch 5, the best predictor is GShare
and the difference in accuracy gain is beyond 0.5, hence we
change the current best predictor and switch to GShare. For
branch 6, the best predictor is GAg, however, we do not
switch to GAg since the accuracy gain is less than θ. We
continue using the same predictor for branch 7 as well, since
GShare is the best for it. The number of predictor switches
(GAg→GAg→GAg→GAg→GShare→GShare→GShare)
in our proposal is 1, while in a classical hybrid
scheme (as shown in Column 7 of TableI), it is 5
(GAg→GAg→GShare→GAg→GShare→GAg→GShare).
Thus the total number of interfering predictors is less than
the classical scheme. This also facilitates in reducing the
number of inter-predictor interferences on a shared-table
implementation, which was the main motivation behind this
work. It may be noted that the worst case number of predictor
switches in our case is upper bounded by the number of
switches in a classical scheme.

V. IMPLEMENTATION AND RESULTS

We now present details of our experiments. All simulations
were run on top of the Tejas [19] architectural simulator.
Tejas is an open source, Java-based multicore architectural
simulator, with support for both trace driven and execution
driven simulation. After execution, it reports various statistics
related to cache utilization, branch prediction accuracy, energy
expenditure, etc. Tejas internally employs the McPAT power
model (v1.0) [13] to compute the processor core energy that
it reports after each simulation, assuming a 32nm technology.
To mimic an embedded resource constrained environment, we
took a pipeline depth of 5, with a PHT table size of 32
KB, and 3.4 GHz core frequency. Additionally, we disabled
the out-of-order-execution, VLIW features. We modified the
Tejas simulator source code to implement a hybrid predictor
that includes a combination of three predictors (GShare, GAg
and Bimodal). In this paper, execution driven simulation was

done for the SPEC 2006 benchmarks [7]. To limit simulation
time, the first 1 billion instructions from each benchmark were
simulated. Tejas was used to record the branch behaviors for
the benchmark programs across all test cases provided and
we recorded the average performance numbers. Each program
was run with different branch predictors and the prediction
accuracy for all the branches of the program on every predictor
was recorded. For each branch, we marked a best predictor and
for the overall program in terms of prediction accuracy.

Our predictor selection algorithms were implemented on top
of the hybrid prediction method that shares the PHT table
among the predictors to improve the overall performance of
a processor. As input, these methods take the branch profile
information for all branches from the profile generation stage
as discussed above. The simulation of the new selection mech-
anism was done using Tejas. For each execution, prediction
accuracy, energy expenditure and latency were recorded for
comparing against other hybrid prediction techniques (without
selective switching) that either share the PHT table among
interfering predictors or split the PHT table for them.

Benchmark Interference Interference
(in shared implementation) (using switching algorithm)

(%) (%)
403.gcc 3.7 2.2

400.perlbench 4 3.3
429.mcf 1.2 0.5

458.sjeng 1 0.2
456.hmmr 1.1 0.05
447.dealII 1 0.1

464.h264ref 2 0.7
450.soplex 2.5 1.2
401.bzip2 3.4 0.4

TABLE II: PHT interference statistics with our method

We now report the results of our methods obtained with a
threshold of 0.5. Column 3 of Table II presents the percentage
interference counts with our proposed switching method, with
respect to the original shared table implementation. It can be
seen that there is a reduction in % of interferences for almost
every program used here. Figures 6, 7 and 8 respectively
present the improvements in average prediction accuracy,
energy and execution time for a shared 32KB PHT hybrid
predictor implementation with selective switching, and ii) a
split PHT table of size 16KB for every individual predictor,
with respect to the original 32KB shared PHT table implemen-
tation. It can be observed from Figure 6 that the original shared
PHT table implementation performs much worse than each of
the above schemes, hence the differences are positive. Even
for most of the programs, the prediction accuracy obtained
from the shared PHT table implementation is even lower
than the accuracy of any single predictor. Our experiments
show that our proposed switching algorithm that works on
a shared PHT table can improve the prediction accuracies
as expected. Although the average accuracy improvement is
not so high, around 2%-3%, however, a single misprediction
can increase a significant amount of processor cycles as well
as extra instruction fetches. Figure 7 shows that there is an
increase in energy expenditure in the shared implementation

and our switching method can reduce the energy expenditure
for all the benchmark programs. Figure 8 presents the same
detail with respect to execution time. It may be noted that
a lower value of execution time is more desirable, and our
heuristic indeed achieves comparable or marginally less at
times. From the experiments, it can also be seen that our
selective switching method when employed on top of a shared-
table implementation produces better accuracy than the split
table implementation for all the performance metrics discussed
here.

Fig. 6: Prediction accuracy comparison

Fig. 7: Processor core energy comparison

VI. DISCUSSION

In this paper, we utilize a static profile based selection scheme
to select the overall best predictor with highest average pre-
diction accuracy for a program and also for each branch.
We use this profile information to control the number of
predictor switches. This requires a good set of representative
test-cases that can exercise the different branches with different
conditions, and help us collect the required information about
the predictors. Also, since this is an offline step, we need to

Fig. 8: Execution time comparison

somehow store this information for use at run-time, which can
be considered as a significant overhead. In addition to this, we
need to track during execution, whether there is a better choice
than the current predictor, and whether that choice is better by
a sufficiently high amount to cross the threshold. This extra
overhead may lead to higher energy cost per prediction. An-
other obvious limitation of our proposed switching algorithm
is the fact that along with the negative interferences, it also
reduces the instances of positive interference (since we limit
the number of uses of different predictors) and thereby, lose the
benefit of it. However, as evident from our results, the gain
in being able to reduce negative interference outweighs the
benefit that we may have received from positive interference
between predictors, since the number of instances of negative
interference for a program is much more than their positive
counterparts [25].

VII. CONCLUSION AND FUTURE WORK

In this paper, we examine the effect of predictor table interfer-
ence on prediction accuracy of a hybrid predictor for resource
constrained environments. We propose a predictor selection
method to improve prediction accuracy by controlling the
interference. Experimental results show the improvement.

Going ahead, we are planning to do away with the static
profiling step. As a replacement, we are working on the phase-
wise behavior of programs during execution. Our plan is to
begin with a simple bimodal predictor and continue with it
for prediction for an initial number of cycles (we have taken
20000) to observe the performance of each predictor for each
branch and record the overall best predictor for that phase. We
proceed to the next phase with these information, and use these
predictors (overall best and best for each individual branch)
for the entire next phase of the program. In the background,
we continue to record the average prediction accuracy of each
predictor and the branch specific accuracy, and update the
information accordingly for the next phase. We are currently
working on setting up this infrastructure. We believe that
our design will open up new avenues for future research on

architectural designs that can better balance the accuracy and
energy tradeoff.

VIII. ACKNOWLEDGEMENT

The authors would like to acknowledge Professor Mainak
Chaudhuri, IIT Kanpur and Prof. Bei Yu, Chinese University
of Hong Kong for their suggestions.

REFERENCES

[1] M. I. Bielby. Ultra low power cooperative branch prediction. The
University of Edinburgh, 2015.

[2] J. J. Bonanno et al. Hybrid branch prediction using a global selection
counter and a prediction method comparison table, Aug. 30 2005. US
Patent 6,938,151.

[3] M. Burrows. Dynamically determining instruction hint fields, Mar. 23
1999. US Patent 5,887,159.

[4] Chang et al. Branch classification: a new mechanism for improving
branch predictor performance. In MICRO, pages 22–31. ACM, 1994.

[5] P.-Y. Chang et al. Branch classification: a new mechanism for improving
branch predictor performance. International Journal of Parallel Pro-
gramming, 24(2):133–158, 1996.

[6] Evers et al. Using hybrid branch predictors to improve branch prediction
accuracy in the presence of context switches. In ACM SIGARCH
Computer Architecture News, volume 24, pages 3–11. ACM, 1996.

[7] J. L. Henning. Spec cpu2006 benchmark descriptions. ACM SIGARCH
Computer Architecture News, 34(4):1–17, 2006.

[8] G. G. Henry et al. Hybrid branch predictor with improved selector table
update mechanism, Apr. 15 2003. US Patent 6,550,004.

[9] Hicks et al. Towards an energy efficient branch prediction scheme using
profiling, adaptive bias measurement and delay region scheduling. In
DTIS, pages 19–24. IEEE, 2007.

[10] Jiménez et al. Dynamic branch prediction with perceptrons. In HPCA,
pages 197–206. IEEE, 2001.

[11] D. A. Jiménez et al. The impact of delay on the design of branch
predictors. In MICRO-33, pages 67–76. IEEE, 2000.

[12] R. E. Kessler et al. The alpha 21264 microprocessor architecture. In
ICCD’98, pages 90–95. IEEE, 1998.

[13] S. Li et al. Mcpat: an integrated power, area, and timing modeling
framework for multicore and manycore architectures. In MICRO, pages
469–480. IEEE, 2009.

[14] S. McFarling. Combining branch predictors. Technical report, Technical
Report TN-36, Digital Western Research Laboratory, 1993.

[15] Mohammadi et al. On-demand dynamic branch prediction. Computer
Architecture Letters, 14(1):50–53, 2015.

[16] Patil et al. Combining static and dynamic branch prediction to reduce
destructive aliasing. In HPCA-6, pages 251–262. IEEE, 2000.

[17] J. R. Patterson. Accurate static branch prediction by value range
propagation. 30(6):67–78, 1995.

[18] A. Ramirez et al. Branch prediction using profile data. In Euro-Par
2001 Parallel Processing, pages 386–394. Springer, 2001.

[19] Sarangi et al. Tejas: A java based versatile micro-architectural simulator.
In PATMOS, 2015.

[20] A. Seznec. A 64 kbytes isl-tage branch predictor. JWAC-2: Champi-
onship Branch Prediction, 2011.

[21] A. Seznec. A new case for the tage branch predictor. In MICRO, pages
117–127. ACM, 2011.

[22] A. Seznec et al. Design tradeoffs for the alpha ev8 conditional branch
predictor. In ACM SIGARCH Computer Architecture News, volume 30,
pages 295–306. IEEE Computer Society, 2002.

[23] A. Seznec et al. A case for (partially) tagged geometric history length
branch prediction. Journal of ILP, 8:1–23, 2006.

[24] Shah et al. Method and apparatus for using static branch predictions
hints with dynamically translated code traces to improve performance,
Mar. 20 2001. US Patent 6,205,545.

[25] E. Sprangle et al. The agree predictor: A mechanism for reducing
negative branch history interference. In ACM SIGARCH Computer
Architecture News, volume 25, pages 284–291. ACM, 1997.

[26] C. Young et al. Improving the accuracy of static branch prediction using
branch correlation. In ACM Sigplan Notices, volume 29, pages 232–241.
ACM, 1994.

