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ARCHITECTURES FOR
INSTRUCTION-LEVEL PARALLELISM B
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SUPERPIPELINED MACHINE

Superpipelined Execution
Instruction Parallelism = Dx/V/
Operation Latency = M minor cycles
Peak IPC =1 per minor cycle (M per baseline cycle)

¢ > major cycle = M minor cycles
<> minor cycle




SUPERSCALAR MACHINES

Superscalar (Pipelined) Execution

Instruction Parallelism = Dx/
Operation Latency = 1 baseline cycles
Peak IPC = N per baseline cycle
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OuT OF ORDER EXECUTION

* Execute instr. based on “data flow” rather than program
order.

* Basic idea:
* Fetch fills up a window of instructions.

e Of all instructions in the window, look for ones ready to execute:

e All the data on which the instructions are dependent are ready
* Resources are available.

* As soon as instruction is executed, it needs to signal to its
dependent instructions that the input is ready.

* Triggers “wake-up” and “instruction select” for next cycle

* Advantages:
e Help exploit Instruction Level Parallelism (ILP)
e Help cover latencies (e.g., cache miss, divide)
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MOORE’S LAW IN ACTION
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* 2300 transistors, 1 MHz clock (Intel 4004) - 1971

e 16 Million transistors, 900MHz (Ultra Sparc Ill) - 2001

* 42 Million, 1.5 GHz clock (Intel P4) - 2001

[ ]

140 Million transistors, 500MHz (HP PA-8500) - 1998



CHIP POWER DENSITY
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THE COST OF SPECULATION

* How does the processor find enough “ready”
instructions?
* Look beyond branch boundaries

» Use fairly sophisticated branch prediction mechanisms to
guess target and direction.

* Front end fills instruction window with instructions down path
of predicted branch

 What happens if the branch prediction is wrong?

 What is the cost in terms of performance and power of
keeping these “wrong path” instructions in the
instruction window?



REDUCING MIS-SPECULATED
INSTRUCTIONS TO SAVE POWER mm

e Executing wrong path instruction is a waste of power
* Does nothing to improve effective IPC either

* IDEA: if branch prediction becomes too speculative,
don’t bother continuing to fetch instructions past
branches

* Fetch unit stops reading new instructions from the cache
* Instruction window does not take new instructions

* Instruction execution rate may slow, but only until predicted
branches have been resolved

* How do we know if an instruction flow has become
“too speculative”?
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PIPELINE GATING (ISCA 1998 MANNE ET AL.)
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ICache =

 Low-confidence branch counter records # of unresolved
branches that reported as low-confidence.

* The processor gates off instruction fetch if there are more
than N unresolved low-confident branches in the pipeline.

mm) ISCA 2013 Influential Paper Award !



DO WE NEED WIDE ISSUE MACHINES?

* Many programs never achieve IPC values close to
the maximum issue of the machine
* Branch Misprediction
* Dependency Chains
e Cache Misses

e Overall IPC is not indicative of superscalar needs of
a program



VARYING PROGRAM NEEDS

Issue IPC

10 20 30 40 50 60 70 80 90 100

Window (per 10,000 cycles)

* Nearly 3X difference in IPC across successive
snapshots of the program execution
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MICROARCHITECTURAL DECISIONS IMPACT POWERZE:

21464 Power Distribution
21264 Power Distribution

Issue
46%




PIPELINE BALANCING (ISCA 2001, BAHAR, MANNE)=:

* Monitor the varying issue requirements of each
program
* Overall issue rate
* Floating point issue rate
e History of past behavior

* IDEA: Tune processor issue and execution
resources according to the needs of the program

* Goal: Reduce power, retain performance



arbiterO
Right arbiter1
Cluster

Right Cluster
Functional Units

T

L
7 PLB

—_—

Register . Monitors

Rename w

Unit

Left Commit
Unit

Cluster




¢ =W
Y
m
™

e
—
S o~
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PRIMARY AND SECONDARY TRIGGERS

Speedup Using FP IPC and Mode History as Secondary Triggers
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100%
96% — — — — — -
92% — — — — — — -
88% 1 — — — ] ] — — -
84% — — — — — — — -
80% ‘ ‘
. N S\ Q .
@%e s \@(Q <5 o s & O,qo (b\\éD
S & - S
® < R &
N\
O




|Q DESIGN AND POWER DISSIPATION

e Goal: Issue N instructions out of M entries in 1Q

* |Q power is relative to the size of N and M

Left Cluster Right Cluster

Arbiters Scoreboard Arbiters

Instruction Storage Array

Reg File (L) Reg File (R)




PER COMPONENT POWER ESTIMATES

O unaffected @ 6-wide W 4-wide
* Up to 35% of Issue Queue

100% power is saved
80% » Arbiter enable signals
60% » Bid logic
40% » Selection logic

20% * Up to 20% of Execution Unit
0% power is saved

Execution > Disable clocks in unused
Unit portions




COMPONENT POWER REDUCTION WITH PLB

IQ and Exec Power Savings
25%

~ 4-wide B 6-wide

20%

15%

1Q Power
I
EXEC Power l

10%




CHIP-WIDE POWER ESTIMATES

* 17-35% of IQ power saved
> % of Total power: 4-8%

* 10-20% of Execute Unit
power saved

» % of Total power: 2-4%

* Up to 12% of total power
saved using PLB




ENERGY—-EFFICIENT
TRANSACTIONAL MEMORY
FOR EMBEDDED SYSTEMS



MULTICORE ARCHITECTURES

* Like GP systems, embedded platforms have turned to
multicore architectures

* Better scalability and design cycle time

* |ssues:
e Required High Level Of Parallelism
e Synchronization Must be Efficient

 What’s Special about Embedded Multicore:

* Simplicity! (small caches, no OS support)
e Power matters (as much as throughput)



MULTIPROCESSOR SYNCHRONIZATION

* Focus: Shared Memory Model (widely accepted)

e Common Approach: Lock-based Synchronization
* ldea: mutual-exclusive access to shared data (i.e., critical sections)

Time

Thread #1

,‘ :
Critical
Section
Lunlock =
\’

Thread #2

Critical
Section

Thread #3

No
Concurrency

Critical

Section
| unlock




TRANSACTIONAL PROGRAMMING

* Key Features:
* Optimistic (i.e., concurrent) execution of critical sections
* Threads run in isolation
* Atomicity (roll-back in case of conflict)

Thread #1 Thread #2 Thread #3

Full
v \ \4

d Higher Performance than Fine-grained Locking
(without reliability issues)

Time




TM FOR EMBEDDED SYSTEMS

e Software-TM schemes (STM or HW-accelerated STM):

* Flexible, but heavyweight
* Require OS support
* Too slow (and power hungry...)

 Hardware-TM schemes (HTM):

* Less flexible, but simple, power-efficient, and higher performance

* Transaction sizes may be bounded, but...

* For embedded systems, resource requirements are well understood
Full HW-TM seems a natural design choice for embedded systems

d New challenges .
»Peculiar Memory Hierarchy (eg. tightly-coupled private
memories)
»Limited resources (eg. smaller caches, no OS)
»Energy Constrained environment




15T WORK IN EMBEDDED HTM: SoC-TM =

* Simplify contention management
* Disentangle HTM from cache coherence
* Bloom Module for conflict detection
* More flexibility for conflict resolution policies

* Create an integrated HW/SW solution for
transactional programming on MP-SoCs
e Expands on Transactional OpenMP (OpenTM)

* Adds support for speculative task- and data-level
parallelism



SIMPLIFYING CONFLICT DETECTION

* Originally, conflict detection was through the cache
coherency protocol of each core

* Requires modification to MESI protocol
* Hard to exercise control over conflict resolution policy

 Bloom Module: centralized module for read/write
conflict detection

* Key Features:
* Decoupled from Cache Coherency
* Keeps Tx histories in per-core Bloom signatures
* Detects conflicts by comparing bits in the signatures

* Programmable (Any algorithm can be used by the module to
decide which core to abort)

33



EXPERIMENTAL RESULTS

e STAMP benchmarks

* energy consumption comparison with locks
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2ND WOoRK: EMBEDDED-TM

Limitations of SoC-TM

* Used a centralized unit to snoop on the bus traffic.
e Bus-based architecture: one transaction/cycle.

Next Work: First implementation of HTM for cluster-based NUMA
embedded systems without cache-coherence.

Lack of cache-coherence brings major challenges in HTM design.

Contributions:
* Building from scratch a self-contained HTM scheme.
* Propose novel hardware support for tracking memory accesses.
* Single-cluster but extendable to multi-clusters.
* Performance evaluation.



TARGET ARCHITECTURE
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EMBEDDED-TM IMPLEMENTATION

In our case: Logical Interconnect allows multiple transactions/cycle.
Snooping =@ bottleneck, limits scalability.

Multiple per-bank Transactional Support Modules (TSM).

= Distribute conflict detection/resolution across TCDM banks.

Vs

SQ%Di Distributed Transactional Memory Control.

Our TM support design:
= a) Transactional Bookkeeping
= b) Data Versioning
= ¢) Rollback Mechanism.



A) TRANSACTIONAL BOOKKEEPING

Mechanism that keeps track of transactional readers/writers in memory.

Each bank’s TSM intercepts all memory traffic to bank. Upon conflict, it
notifies conflicted cores.

For each data line: Multiple Readers, Only one writer/owner.

Write to a location read by another core = Conflict!
Read to a location read by other cores = No Conflict!

Each bank keeps track of readers/writers per data line through per-bank array
of k r-bit vectors,

r=1+log:N+ N, N:#cores in cluster, k: # data lines per bank,
Owner Bit  Writer ID Readers (1 bit per core)
Timeta: o 0000 0000000110000010

Bit#: 20 19 18 17 16 15 14 13 12 11 10 9 87 6 56 4 3 2 1 0



B) DATA VERSIONING

DVM 0

s

BANK O

DATA

( pvm1

Tightly Coupled Data Memory (TCDM)

BANK 1

DATA

(Core’s N-1 Log) 1

DVM M-1

- BANK M-1

DATA

Original data saved in Logs, distributed among TCDM banks.

In each bank: fixed-size log space per core.

Each core’s log includes entries for modified data for that bank only

Data Versioning Modules (DVM) monitor accesses for its bank only.



B) DATA VERSIONING

T

DVM 0

e

BANK O

DATA

\DVM 1

BANK 1

DATA

(Core’s N-1 Log) 1

- BANK M-1

DATA

Tightly Coupled Data Memory (TCDM)

Transaction begins: save state of core (PC, registers, SP, stack)

On a write: DVM checks log for entry, creating new entry only once.

On a data conflict: Each bank’s log is traversed. Data restored.

Transaction completes with no error: logs are cleared.



C) ROLLBACK MECHANISM

Conflicts are detected while transaction executes
We choose to abort the “requester”
Triggers a call to abort _transaction() function

Restores saved state from logs of all banks in TCDM
for requester transaction

Aborted transaction tries again after some backoff
period
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Execution Time norm. to

2) SKIPLIST
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Execution Time norm. to

single-core Locks

3) GENOME
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EXPLOITING HARDWARE TRANSACTIONAL
MEMORY FOR ERROR TOLERANCE AND
ENERGY EFFICIENCY
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VARIABILITY-INDUCED ERRORS

. ShrinkinE transistor sizes has left devices more
susceptible to variability

* Static Variations: lead to performance/power mismatches

* Dynamic variations: aging, voltage drops, temperature
fluctuations

 Solution: Conservative guardbands on the operating
frequency/voltage

Performance l Energy '

* Reduce guardbands?
* Intermittent timing errors
 Critical operating point (COP)




A) INTERMITTENT TIMING ERRORS

Intermittent Timing Errors cause erroneous instructions
with wrong outputs or incorrect control flow.

Timing Errors
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B) CRITICAL OPERATING POINT

Critical Operating point (COP): (Vc, Fc) pair that if surpassed:

—> Massive instruction failures.

100% |

g (=] [oe]
o o
R R N

Percentage Error Rate

o
(=}
=

0% |

0,7 0 0,9 1,0

8
Supply Voltage

COP might change over space/time.
In a many-core environment:
" COP might differ among cores
" Become unsafe.

COP Hypothesis : In large CMOS circuits,
there exists a critical operating frequency
F. and a critical voltage V_ for a fixed
temperature T, such that:

* Any F > F_causes massive errors.
* AnyV<V_causes massive errors.
* AnyF<F.andV>V_,

no errors occur.
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CONTRIBUTIONS

" We need a recovery mechanism to avoid guardbands and
operate at lower voltage to save energy.

= Edge-TM: HW/SW scheme for error resilience and energy
efficiency:

= Scales down the voltage to save energy

" Monitors errors

= Hardware Transactional Memory (HTM) for error recovery
(Intermittent timing errors and COP).

= Qur approach:
" Enables operation at highly reduced supply voltage margins.

= Forward progress.

= Low overhead.



EDGE-TM ARCHITECTURE DESIGN

= Parallel Ultra-Low Power Platform (PULP): Cluster-based shared memory embedded

architecture.

SoC domain

L2
memory

wn
—
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|
)
=
(=1
-
=
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o

System bus

Cluster

Peripheral
interconnect

- Edge-TM:

Hardware extensions for error tolerance: a) Error Detection, b) Error Correction.

Software directed DVS error management policies for energy efficiency.
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A) ERROR DETECTION

Error Detection Sequential (EDS): Error detection circuitry for each core.
Probabilistic Error Model (Fojtik et al.): Expected error rate vs. Supply

Voltage for intermittent timing errors.

Timing Errors
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B) ERROR CORRECTION

4] ]
\EIB

HTM: A speculative execution mechanism, used for synchronization in

multicore environments.

Traditionally HTM requires:

-
_———_-.~ ————-- -——---~

1. Bookkeeping (2 Data ver5|on|ng» (3 Checkpomtlng/RoIIback,

N

Data Versioning: Fast distributed logging scheme saves original data.

Checkpointing/Rollback:
Transaction boundaries are defined using OpenMP constructs for parallelism.
Transaction Starts: A snapshot of the processor state is taken.
If error occurs: Transaction Aborts. State and Logs are restored.

If no error occurs: Transaction Commits.



PULP CLUSTER EXTENDED FOR ERROR TOLERANCE ==

Cluster
(PE 1 log) O (PE 1 log) M-1
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EDGE-TM DVS ERROR MANAGEMENT POLICIES

a) Point of First Failure (PoFF) policy: Operates just above the edge of failure.

= Lowers voltage until the first failure. Then voltage is step increased.

b) Thrifty Uncle- Reckless Nephew (TURN) policy:

= Lowers voltage beyond the point of first failure.
= Adjusts voltage based on aborts and commits.

Trade-off: Further voltage scaling saves energy but increases abort rate
m==) Energy and time is wasted in recovery/re-execution.

= Two parts:
1) Reckless Nephew: Scales down voltage for further energy savings.

2) Thrifty Uncle: Moderates energy loss due to aborts by setting up a threshold for
voltage scaling based on number of consecutive aborts: A and commits: C.



THRIFTY UNCLE/RECKLESS NEPHEW POLICY E=
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No
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EXPERIMENTAL SETUP

= Power/Performance numbers from STMicroelectronics 28nm UTB FD-
SOl implementation of PULP.

= Comparison of Edge-TM policies (POFF and TURN) with related work:
= VOMP: Vulnerability-aware, error-tolerant task scheduling (Rahimi et al.)
* FaulTM: Revisiting transactional memory for fault tolerance (Yalcin et al.)

= PWEF: Revisiting transactional memory for timing error-tolerance
(Papagiannopoulou et al.)

= GDBS: Uses guardbands and keeps voltage steady (Baseline technique).
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