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Time-randomized Processors (TRPs) 

Proposed to reduce the timing verification costs of critical 

software using complex processors 

– Autonomous automotive driving systems 

– Unmaned aerial vehicles 

– Industry 4.0 

 

 

High performance features challenge worst-case execution 

time (WCET) estimation 

– Caches 

– Speculation 

– Shared resources 
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Time-randomized Processors  (TRPs) 

Control the sources of execution time variability 

– Randomizing  probabilistically 

• Caches replacement and placement policies 

• Shared resources Arbitration policies 

– Upperbounding  when randomizing is not possible 

• Fixed-Latency floating point unit 

 

In TRPs execution time can be probabilistically modeled 
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Time-randomized Processors 

Timing verification step  collecting measurements 

Probabilistic WCET  Extreme Value Theory (EVT) 

– I.I.D properties 

– Representative measurements 
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Extreme Value Theory (EVT) 

Considers the system as a black box 

Technique to derive the combined probability of appearance 

of those events observed (captured) 

Cannot predict those events that are not observed  

EVT must be fed with meaningful (representative) 

observations data from the execution of that program at 

operation  derived bounds hold at operation 
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Time-randomized Processors (TRPs) 

Example: LEOPARD processor (joint Gaisler-BSC work) 

 

 

 

 

 

 

– Leon-based Multicore 

• Simple for HPC  Complex for critical applications 

–  Modifications 

• Random Replacement and Random placement in Caches 

• Random permutations arbiter in the bus and memory controller 

• Worst-latency FPU  

– Can be enabled/disabled selectively 
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Architectural Modifications 

Randomized Cache Designs 

– To make cache conflicts behave probabilistically and 

remove pathological cases 

– Random replacement 

– Random placement 

• Covers probabilistically conflicts due to variations in the memory 

mapping 
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Architectural Modifications 

Random Arbitration in the on-chip bus and memory controller  

– Round-robin is time analysable but forces assuming the worst-possible 

alignment of requests 

• In a 4 core multicore  3 arbitration rounds is the only safe bound 

– Random arbitration 

• Requests aligment is captured probabilistically 

– Lottery  

 

 

 

– Random permutations  
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Architectural Modifications 

Worst-Latency Floating Point Unit (FPU) 

– In general the end-user cannot reason about the operated values 

– Delay upperbounding is the only safe assumption 

 

LEON FPU (FDIV, FSQRT) 

– FDIV latency: 15-18 cycles 

• Enforce always 18 

– FSQRT latency: 23-26 cycles 

• Enforce always 26 

– End user does not need to control input values 
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Enhanced Reliability Properties  

Example: Aging effect reduction in caches 

– Hot carrier injection effects are proportional to utilization 

– Randomized caches provide uniform set access distribution 
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Enhanced Reliability Properties  

Power/Performance stability 

– Pathological cases occur with a quantifiable (low) probability 
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Enhanced Security Properties 

Randomization techniques has been proposed for Security 

– Caches 

• Layout randomization 

• Random fill cache 

– Pipeline 

• Random stalls insertion 

Randomization protect the processor against : 

– Cache side channel attacks 

– Power analysis attacks 

 

TRPs  Inherit security properties from randomization 

Randomization security techniques do not meet TRPs 

requirements 
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Time-randomized Processors for HPC 

What they can offer?  

– Guaranteed Performance at a low cost 

 

 

 

 

 

 

 

 

 

– Enhanced Security and reliability properties 

 

 

Core 

 

 

Core 

 

 

Core 

 

 

Core 

AMBA AHB On-chip BUS Shared L2 

Memory 

Controller 

IOMMU 

GE 
I/

O 

DL1 IL1 

MMU 

DL1 IL1 

MMU 

DL1 IL1 

MMU 

DL1 IL1 

MMU 

Time-Critical 

Application 

Performance 

demading 

Applications 



14 

Time-randomized Processors (TRPs) for HPC 

TRPs reduce verification effort required to test extreme 

situations 

– With deterministic processors a huge effort is required to trigger worst-

case conditions (e.g power viruses) 

• Current processors complexity is very high 

• Post-silicon validation is thorough process 

 

 

 

– In TRPs extreme events will emerge naturally  reducing the 

complexity of the verification process   

• An arbitrarily low probability can  

be attached to the non-observed events  

avoiding safe guardbands  

for the unfeasible situations 
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Time-randomized Processors (TRPs) for HPC 

With TRPs extreme events occur with a given probability 

– The architect is provided with a solid argument 

• Extremely low probable events (e.g below meteorit impact) can be simply 

discarded 

• Having quantifiable events helps finding the most adequate safety 

measurement (as for random hardware failures) 

   

– Extreme value theory can be employed to argue about extreme power, 

temperature, execution conditions 



QUESTIONS? 
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