
www.bsc.es

Time-randomized Processors for Secure and

Reliable High-Performance Computing

David Trilla†,‡, Carles Hernández‡, Jaume Abella‡, Francisco J. Cazorla‡,*

1st Workshop on Pionering Processor Paradigms

Austin, TX, US

‡ † *

2

Time-randomized Processors (TRPs)

Proposed to reduce the timing verification costs of critical

software using complex processors

– Autonomous automotive driving systems

– Unmaned aerial vehicles

– Industry 4.0

High performance features challenge worst-case execution

time (WCET) estimation

– Caches

– Speculation

– Shared resources

3

Time-randomized Processors (TRPs)

Control the sources of execution time variability

– Randomizing  probabilistically

• Caches replacement and placement policies

• Shared resources Arbitration policies

– Upperbounding  when randomizing is not possible

• Fixed-Latency floating point unit

In TRPs execution time can be probabilistically modeled

system 1, 4, 5, 2,…

1, 4, 5, 2,…

Probability of 1, 1, 1, 1, 1?

unknown

5

6

1











4

Time-randomized Processors

Timing verification step  collecting measurements

Probabilistic WCET  Extreme Value Theory (EVT)

– I.I.D properties

– Representative measurements

1,E-04

1,E-03

1,E-02

1,E-01

1,E+00

0 100 200 300 400 500 600 700

EVT

5

Extreme Value Theory (EVT)

Considers the system as a black box

Technique to derive the combined probability of appearance

of those events observed (captured)

Cannot predict those events that are not observed

EVT must be fed with meaningful (representative)

observations data from the execution of that program at

operation  derived bounds hold at operation

6

Time-randomized Processors (TRPs)

Example: LEOPARD processor (joint Gaisler-BSC work)

– Leon-based Multicore

• Simple for HPC  Complex for critical applications

– Modifications

• Random Replacement and Random placement in Caches

• Random permutations arbiter in the bus and memory controller

• Worst-latency FPU

– Can be enabled/disabled selectively

Core

Core

Core

Core

AMBA AHB On-chip BUS Shared L2

Memory

Controller

IOMMU

GE
I/

O

DL1 IL1

MMU

DL1 IL1

MMU

DL1 IL1

MMU

DL1 IL1

MMU

7

Architectural Modifications

Randomized Cache Designs

– To make cache conflicts behave probabilistically and

remove pathological cases

– Random replacement

– Random placement

• Covers probabilistically conflicts due to variations in the memory

mapping

Address

Random number

(given at execution start)

Parametric

function

8

Architectural Modifications

Random Arbitration in the on-chip bus and memory controller

– Round-robin is time analysable but forces assuming the worst-possible

alignment of requests

• In a 4 core multicore  3 arbitration rounds is the only safe bound

– Random arbitration

• Requests aligment is captured probabilistically

– Lottery

– Random permutations

9

Architectural Modifications

Worst-Latency Floating Point Unit (FPU)

– In general the end-user cannot reason about the operated values

– Delay upperbounding is the only safe assumption

LEON FPU (FDIV, FSQRT)

– FDIV latency: 15-18 cycles

• Enforce always 18

– FSQRT latency: 23-26 cycles

• Enforce always 26

– End user does not need to control input values

P
ro

b
a
b
ili

ti
e
s

Execution time

Upperbounding

10

Enhanced Reliability Properties

Example: Aging effect reduction in caches

– Hot carrier injection effects are proportional to utilization

– Randomized caches provide uniform set access distribution

11

Enhanced Reliability Properties

Power/Performance stability

– Pathological cases occur with a quantifiable (low) probability

12

Enhanced Security Properties

Randomization techniques has been proposed for Security

– Caches

• Layout randomization

• Random fill cache

– Pipeline

• Random stalls insertion

Randomization protect the processor against :

– Cache side channel attacks

– Power analysis attacks

TRPs  Inherit security properties from randomization

Randomization security techniques do not meet TRPs

requirements

13

Time-randomized Processors for HPC

What they can offer?

– Guaranteed Performance at a low cost

– Enhanced Security and reliability properties

Core

Core

Core

Core

AMBA AHB On-chip BUS Shared L2

Memory

Controller

IOMMU

GE
I/

O

DL1 IL1

MMU

DL1 IL1

MMU

DL1 IL1

MMU

DL1 IL1

MMU

Time-Critical

Application

Performance

demading

Applications

14

Time-randomized Processors (TRPs) for HPC

TRPs reduce verification effort required to test extreme

situations

– With deterministic processors a huge effort is required to trigger worst-

case conditions (e.g power viruses)

• Current processors complexity is very high

• Post-silicon validation is thorough process

– In TRPs extreme events will emerge naturally  reducing the

complexity of the verification process

• An arbitrarily low probability can

be attached to the non-observed events

avoiding safe guardbands

for the unfeasible situations

15

Time-randomized Processors (TRPs) for HPC

With TRPs extreme events occur with a given probability

– The architect is provided with a solid argument

• Extremely low probable events (e.g below meteorit impact) can be simply

discarded

• Having quantifiable events helps finding the most adequate safety

measurement (as for random hardware failures)

– Extreme value theory can be employed to argue about extreme power,

temperature, execution conditions

QUESTIONS?

16

