www.bsc.es

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Time-randomized Processors for Secure and Reliable High-Performance Computing

David Trilla^{†,‡}, Carles Hernández[‡], Jaume Abella[‡], Francisco J. Cazorla^{‡,*}

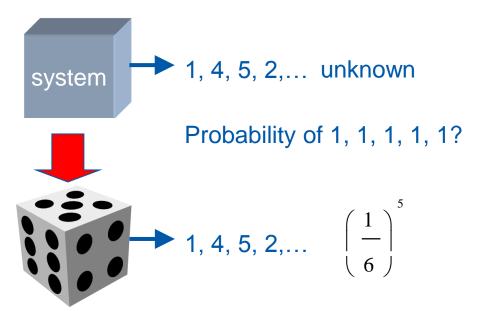
‡

Barcelona Supercomputing Center Centro Nacional de Supercomputación

1st Workshop on Pionering Processor Paradigms Austin, TX, US

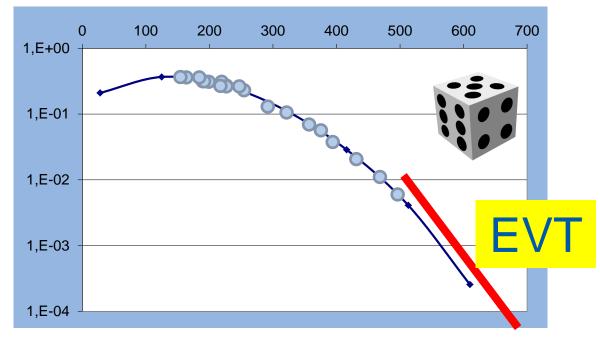
Time-randomized Processors (TRPs)

- (Proposed to reduce the timing verification costs of critical software using complex processors
 - Autonomous automotive driving systems
 - Unmaned aerial vehicles
 - Industry 4.0

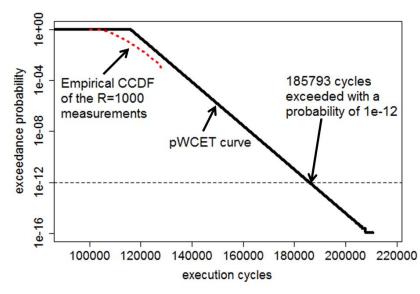

- (High performance features challenge worst-case execution time (WCET) estimation
 - Caches
 - Speculation
 - Shared resources

Time-randomized Processors (TRPs)

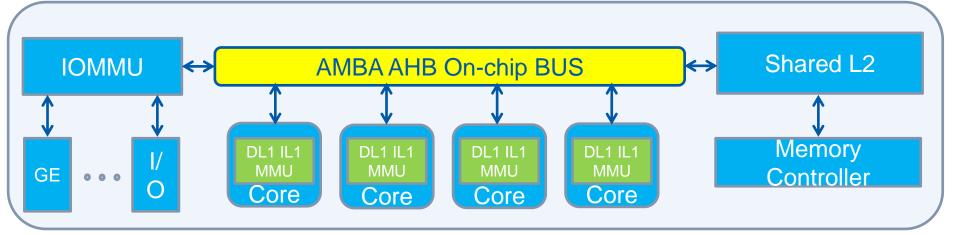
- (Control the sources of execution time variability
 - Randomizing \rightarrow probabilistically
 - Caches replacement and placement policies
 - Shared resources Arbitration policies
 - Upperbounding \rightarrow when randomizing is not possible
 - Fixed-Latency floating point unit


(In TRPs execution time can be probabilistically modeled

Time-randomized Processors

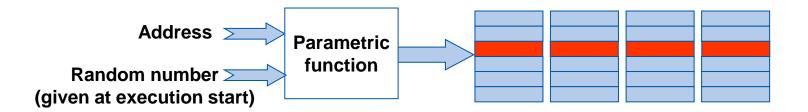

- (Timing verification step \rightarrow collecting measurements
- (Probabilistic WCET \rightarrow Extreme Value Theory (EVT)
 - I.I.D properties
 - Representative measurements

Extreme Value Theory (EVT)


- (Considers the system as a black box
- (Technique to derive the <u>combined</u> probability of appearance of those events <u>observed</u> (captured)
- (Cannot predict those events that are not observed
- (€VT must be fed with *meaningful* (representative) observations data from the execution of that program at operation → derived bounds hold at operation

Time-randomized Processors (TRPs)

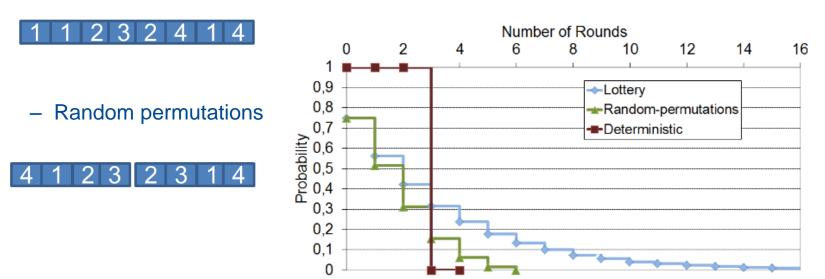
(Example: LEOPARD processor (joint Gaisler-BSC work)


- Leon-based Multicore
 - Simple for HPC $\leftarrow \rightarrow$ Complex for critical applications
- Modifications
 - Random Replacement and Random placement in Caches
 - Random permutations arbiter in the bus and memory controller
 - Worst-latency FPU
- Can be enabled/disabled selectively

Architectural Modifications

(Randomized Cache Designs

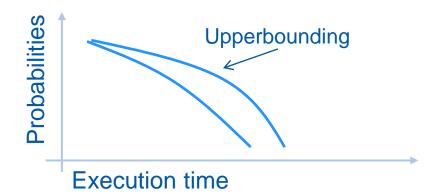
- To make cache conflicts behave probabilistically and remove pathological cases
- Random replacement
- Random placement
 - Covers probabilistically conflicts due to variations in the memory mapping



Architectural Modifications

(Random Arbitration in the on-chip bus and memory controller

- Round-robin is time analysable but forces assuming the worst-possible alignment of requests
 - In a 4 core multicore \rightarrow 3 arbitration rounds is the only safe bound
- Random arbitration
 - Requests aligment is captured probabilistically
 - Lottery

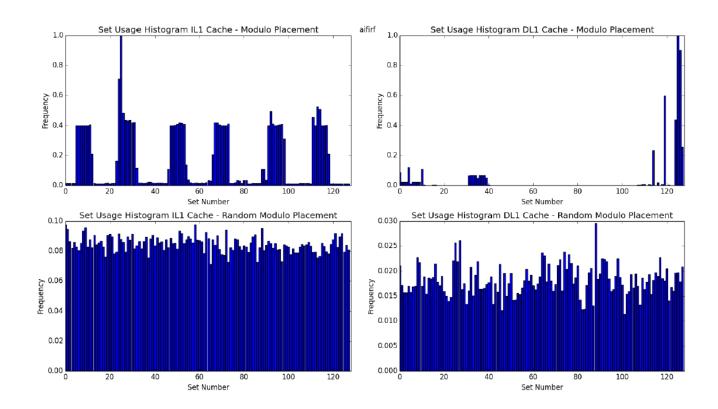


Architectural Modifications

- (Worst-Latency Floating Point Unit (FPU)
 - In general the end-user cannot reason about the operated values
 - Delay upperbounding is the only safe assumption

(LEON FPU (FDIV, FSQRT)

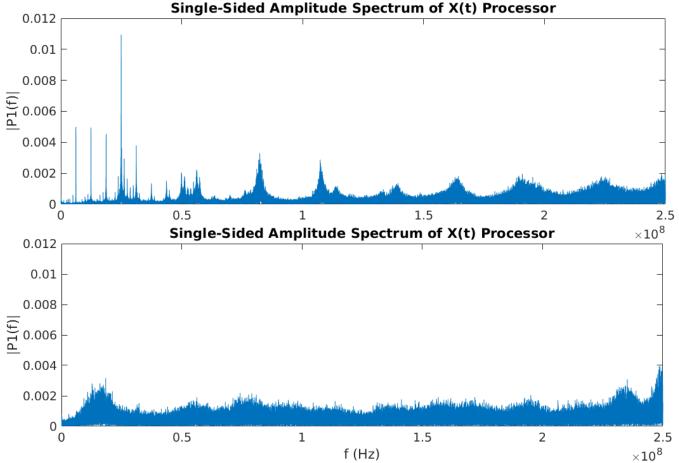
- FDIV latency: 15-18 cycles
 - Enforce always 18
- FSQRT latency: 23-26 cycles
 - Enforce always 26



- End user does not need to control input values

Enhanced Reliability Properties

- (Example: Aging effect reduction in caches
 - Hot carrier injection effects are proportional to utilization
 - Randomized caches provide uniform set access distribution

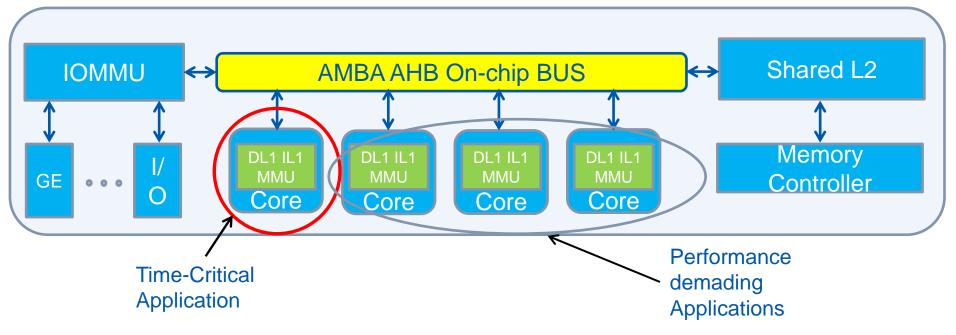


Enhanced Reliability Properties

(Power/Performance stability

- Pathological cases occur with a quantifiable (low) probability

Enhanced Security Properties


- (Randomization techniques has been proposed for Security
 - Caches
 - Layout randomization
 - Random fill cache
 - Pipeline
 - Random stalls insertion
- (Randomization protect the processor against :
 - Cache side channel attacks
 - Power analysis attacks
- (TRPs → Inherit security properties from randomization
 (Randomization security techniques do not meet TRPs requirements

Time-randomized Processors for HPC

(What they can offer?

- Guaranteed Performance at a low cost

- Enhanced Security and reliability properties

Time-randomized Processors (TRPs) for HPC

- (TRPs reduce verification effort required to test extreme situations
 - With deterministic processors a huge effort is required to trigger worstcase conditions (e.g power viruses)
 - Current processors complexity is very high
 - Post-silicon validation is thorough process

- In TRPs extreme events will emerge naturally → reducing the complexity of the verification process
 - An arbitrarily low probability can be attached to the non-observed events
 →avoiding safe guardbands for the unfeasible situations

Time-randomized Processors (TRPs) for HPC

(With TRPs extreme events occur with a given probability

- The architect is provided with a solid argument
 - Extremely low probable events (e.g below meteorit impact) can be simply discarded
 - Having quantifiable events helps finding the most adequate safety measurement (as for random hardware failures)
- Extreme value theory can be employed to argue about extreme power, temperature, execution conditions

Barcelona Supercomputing Center Centro Nacional de Supercomputación

QUESTIONS?