
Time-Randomized Processors for Secure and
Reliable High-Performance Computing

David Trilla†,‡, Carles Hernandez†, Jaume Abella†, Francisco J. Cazorla?,†
† Barcelona Supercomputing Center (BSC). Barcelona, Spain
‡ Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

? Spanish National Research Council (IIIA-CSIC). Barcelona, Spain.

Abstract—Time-randomized processor (TRP) architectures
have been shown as one of the most promising approaches to
deal with the overwhelming complexity of the timing analysis
of high complex processor architectures for safety-related real-
time systems. TRPs apply randomization techniques to the
policies controlling hardware resources with variable latency to
make the execution time of programs running on top of such
processors to follow a probability distribution. Thus, with TRPs
the timing analysis step mainly relies on collecting measurements
of the task under analysis rather than on complex, and often
inaccurate, timing models of the processor that are hard to build.
Additionally, randomization techniques applied in TRPs provide
increased reliability and security features when compared with
time-deterministic architecture counterparts. In this paper, we
elaborate on the reliability and security properties of TRPs and
the suitability of extending this processor architecture design
paradigm to the high-performance computing domain.

I. INTRODUCTION

Nowadays processors are used almost everywhere, from
data-centers and supercomputers to small personal devices
and intelligent transportation systems. Processors in each
domain have been subject to different requirements in terms of
area, power consumption, temperature, performance, reliability
and security. For instance, in the high-performance domain
reliability has been a second order concern for many years
in comparison with performance first and power/temperature
later. This has led to high-performance processor designs
where reliability is often addressed at late design stages
and typical solutions resort to adding error detection and
correction means in caches and memories, and hardening some
registers and latches to improve resilience in front of soft
errors. Analogously, security has received much less attention
in high-performance processors where most effort has been
put in adding specific cryptographic accelerators rather than
in protecting them from malicious attacks. Conversely, in
some other domains like safety-critical systems, reliability and
security have been primary concerns already in early design
stages for many years due to their potential threads affecting
human lives and the integrity of the systems themselves.

However, the need to push technology scalability limits
further every generation in the high-performance domain has
made faults to be more frequent and thus, reliability has
become also a primary concern in this domain. Additionally,
high-performance processors used in data-centers and servers
have to meet strong security requirements to avoid malicious
attacks stealing data from users co-hosted in the system.
Also, reliability is crucial to keep security levels high since
the exploitation of system reliability vulnerabilities has been
shown as a potential threat for security [11].

Several years ago probabilistic timing analysis (PTA) [5]
– built upon randomized timing behavior – arised as a new

timing analysis paradigm with the aim to facilitate the timing-
verification of complex processors running safety-critical ap-
plications. Among other approaches, PTA proposes the uti-
lization of time-randomized processors (TRPs) as a way to
enable the derivation of timing bounds using probabilistic
methods. Typically, complex commercial off-the-shelf (COTS)
processor architectures are not amenable for timing-critical ap-
plications since they include hardware features such as caches,
branch predictors, and multicore technology that severely
complicate the derivation of execution time-bounds for the
programs running on top of these processors. PTA applied
on top of TRPs allows to reduce the complexity of the timing
analysis process. To do so, TRPs employ hardware random-
ization techniques to make the latency of jittery resources to
exhibit a probabilistic nature and thus, to allow the application
of extreme value theory (EVT) [20] to bound program’s
execution time. TRPs simplify the timing verification process
since the derivation of worst-case execution time estimates
relies on the collection of execution time measurements and
not on complex timing models of the processor that are often
incomplete or inaccurate.

The properties of TRPs to enable the utilization of high-
performance processors in time-critical applications at a rea-
sonable cost have been deeply analyzed in the literature [19].
Conversely, in this paper the focus is to highlight the reli-
ability and security properties TRPs can offer to both high-
performance and safety-critical domains. On one hand, the
utilization of randomization techniques matches very well with
the random nature of faults. In this sense, several approaches
have recently shown the good properties of randomization
techniques for both reducing the biased utilization of resources
that leads to worse aging conditions [30] and achieving
a graceful degradation of performance in the presence of
faults [27]. On the other hand, the random nature of the
cache conflicts that TRPs exhibit are particularly interesting
to increase security against side-channel attacks where ran-
domization techniques have shown great potential.

The rest of the paper is organized as follows. In Section II
introduces the properties of TRPs. Sections III and IV discuss
the reliability and security properties of TRPs respectively.
Finally, Section V elaborates on the potentials of TRPs for
the high-performance domain and Section VI draws some
conclusions.

II. ACHIEVING PREDICTABILITY WITH
NON-REPRODUCIBLE TIMING BEHAVIOR

The main difference between TRPs and conventional (time-
deterministic) processor designs resides on the way hardware
resources exhibiting jitter, i.e. what factors trigger different
latencies for those resources that do not exhibit a constant
latency. We distinguish between two main sorts of jittery



Fig. 1. Example pWCET obtained with a TRP.

resources namely intra-thread and inter-thread ones. Intra-
thread jittery resources are, for example, cache memories
in single-threaded cores whose latency depends on whether
accesses resulted in a miss or a hit, and floating-point units
(FPUs) whose latency often depends on the values operated.
Inter-thread jittery resources are those exhibiting a latency that
depends on the interactions of the different threads executing
in the processor. For example, the bus arbiter and the memory
controller are resources whose latency depends on the potential
conflicts due to requests from threads running in the different
cores. If simultaneous multi-threaded (SMT) cores are used,
then those resources where contention could also occur across
threads running in the same core should be also considered
inter-thread jittery resources.

Regardless of its nature, TRPs apply specific policies to
control the jitter. The two policies meeting the requirements
of TRPs w.r.t. PTA consist in, either deterministically or
probabilistically, matching or upperbounding the jitter during
the analysis phase of the system w.r.t. what can occur dur-
ing operation. For instance, when estimating the worst-case
execution time (WCET) of a task (e.g., the airbag software
of a car), execution conditions – including outputs – need to
correspond to worst-case conditions during operation in terms
of execution time. TRPs provide hardware support so that
execution time measurements collected during analysis match
or upperbound tightly those during operation. To upper-bound
the jitter probabilistically, randomization (RND) techniques
are required to make the jitter have a probabilistic nature
during both analysis and operation phases. Deterministic jitter
upperbounding (DUB) requires considering always the worst
possible latency for those resources where it is used. RND
policies are preferred because they do not lead systematically
to the highest latency, as it is the case of DUB.

RND techniques have been applied satisfactorily to caches
and shared resource arbitration. Regarding caches, random
replacement and random placement policies have been pro-
posed to match TRP requirements [13]. For the arbitration
of shared resources the lottery bus [21] has been shown
suitable for TRPs, while other new approaches like random
permutations [16] have been shown be also suitable and offer
improved performance. Regarding UB techniques, they have
been used, for instance, for FP operations whose latency
depends on the input values [19].

When all jittery resources are properly handled, EVT can
be applied to the measurements collected for the programs
executed in TRPs. However, TRPs will offer trustworthy
WCET estimates amenable for the highest criticality levels

when an appropriate methodology is followed. The timing
analysis methodology for which TRPs were proposed is called
Measurement-Based Probabilistic Timing Analysis (MBPTA).
We refer the interested reader to [7], [6] to get the full picture
of the MBPTA protocol. In short, time-measurements collected
on top TRPs follow a probabilistic nature, are independent
and identically distributed, and represent an upper-bound of
the worst events due to the interactions of the different jittery
resources that can occur in the processor. Once appropriate
tests are passed, those measurements are used as input for
EVT, which is a powerful statistical method to approximate
the tail of a distribution. In the case of MBPTA, the tail of the
distribution are high execution times. Then, the probabilistic
WCET (pWCET) is the execution time value of the obtained
distribution whose risk of being exceeded is upperbounded
with a given arbitrarily low probability. The exceedance prob-
ability is chosen to be low enough so that safety standards
allow neglecting it (i.e. residual risk [15]). For instance, if
a program can be run up to 10 times per second (so up to
36,000 times per hour), we can use an exceedance threshold
of 10−15 per run, which guarantees that failures per hour are
below 10−9. Figure 1 shows a pWCET curve in which a cutoff
probability of 10−14 and the corresponding pWCET estimate
are selected. Note that the pWCET curve is shown in the form
of a complementary cumulative distribution function (CCDF)
in logarithmic scale.

A. Randomized cache designs
Randomized caches are required to remove the dependence

of execution time on memory placement, thus releasing end
users from controlling where objects are placed in memory
when different software modules are integrated. This makes
cache jitter follow a probabilistic behavior and be independent
of the memory location of objects. Random cache designs
use random replacement and random placement to make
pathological cache behaviors to occur with a given probability
and thus, to allow applying EVT to the execution timing
measurements to derive probabilistic estimates. To achieve
this, the random placement function takes a random seed and
the upperbits of the accessed address to determine the set that
is accessed. Random placement implementations suitable for
MBPTA are either based on a parametric hash function or on a
random permutation of the index bits. The latter, a.k.a random
modulo, uses a Benes interconnection network to perform a
permutation of the cache set index bits that is driven by a
combination of a random bits and the upperbits of the address.
Figure 2 shows a schematic of random modulo. As shown in
the figure, given a fixed seed the set were a given data is placed
in the cache also depends on the upper bits of the address.
This makes possible to make estimates not to depend on the
actual layout that is finally deployed in the system since the
spectrum of layout conflicts can get covered by simply varying
the random seed. To ensure data consistency the same seed
has to be kept for a given run and changing the seed requires
flushing cache contents across runs.

B. Randomized arbitration
With a random arbiter the contention that requests ex-

perience when accessing shared resources – under worst
contention conditions – can be captured probabilistically and
thus, the particular way requests from different threads align
becomes irrelevant. Random arbitration can be implemented



Fig. 2. Random modulo.

by simply selecting on a random manner the request that is
granted access to a shared resource as proposed in the Lottery
bus [21]. However, with the lottery bus the amount of time a
given request waits until it is granted access is unbounded and
the performance of the arbitration decreases. On the contrary,
as shown in [16], performance guarantees can be improved by
implementing an arbiter based on random permutations. This
random arbiter generates a permutation window consisting on
a random permutation of all possible contenders and serves
requests according to the order determined by the permutation.
Once a permutation is completed a new permutation has to be
generated. With this particular randomization technique, we
ensure that the maximum amount of time a request is waiting
to access a shared resource is bounded. For instance if we
have to arbitrate amongst 4 contenders, the worst possible
contention is given by 2 · (4− 1) = 6 arbitration slots, which
represents that the request arrived just after the expiration of its
assigned slot (the first one) and in the next random permutation
it is assigned the last slot.

C. A Leon-based 4-core time-randomized processor

For illustrative purposes in this section we show what are the
modifications needed to build a TRP starting from a baseline
RTL processor description of the SparcV8 Leon processor [1].
Table I lists the processor features that have been modified in
the baseline processor. First, caches were modified to make
replacement policy in all caches random. This includes all
L1 caches and TLB’s as well as the L2 replacement policy.
Regarding placement, TLBs do not need it since they are
fully associative. For the L1 and L2, we use the most suitable
random placement implementations that are random modulo
(RM) for L1 caches [13] and hash-based random placement
(hRP) for the L2 cache [18]. Since cores are simple in-order
pipelined cores with always-taken branch prediction, we only
regard FPU operations with input-dependent latency as non-
MBPTA-compliant [19], [6]. We have modified the FPU so
that each operation takes its worst latency regardless of the
input data.

Arbitration policies in the bus and the memory controller
have been modified to support random permutations as de-
scribed in [16]. Regarding the L2 cache, the activity of the
other cores is also irrelevant since caches are partitioned in
the context of safety critical systems to avoid interferences
that could invalidate WCET estimates. All in all, although
the evaluation is performed using one core of the multicore,
results remain valid for multicore workloads on fully-MBPTA-
compliant processors. Finally, for randomizing hardware fea-
tures, linear feedback shift registers based hardware pseudo-
random number generators (PRNGs) [2] have been integrated
in the processor.

TABLE I
A LEON-BASED TIME-RANDOMIZED PROCESSOR AND ITS DETERMINISTIC

COUNTERPART.

Time-deterministic Time-randomized

Core
32 bit Sparc ISA
7-stage pipeline
FPU

32 bit Sparc ISA
7-stage pipeline
Fixed latency FPU

3*Caches

L1private
4-way 16KB Instruction
4-way 16KB Data
LRU replacement
Modulo placement

L1 private
4-way 16KB Instructions
4-way 16KB Data
Random replacement
RM and hRP placement

L2 shared
Unified 128K 4-way
LRU
Modulo placement

L2 shared
Unified 128K 4-way
Random replacement
RM and hRP placement

TLBs
1-Instruction, 1-Data
64 entries 4K pages
Fully associative
LRU

TLBs
1-Instruction, 1-Data
64 entries 4K pages
Fully associative
Random replacement

Fig. 3. Execution time (normalized) as cache size decreases for COTS and
TRP designs.

III. RELIABILITY PROPERTIES OF TIME-RANDOMIZED
PROCESSORS

The majority of current processors, regardless of the ap-
plication domain, are provided with some form of fault
tolerance. The most common protection mechanisms are the
error correction codes included in cache structures but other
forms of protection mechanism such as redundancy can be
found as well in some domain-specific designs (e.g., for real-
time or automotive domains [3], [14]). Hereafter, we analyze
how TRPs help maximizing the effectiveness of existing
protection mechanisms and also provide enhanced robustness
capabilities.

A. Improving graceful performance degradation
Fault-tolerant mechanisms are able to keep system function-

ing despite the presence of faults but sometimes this comes
at the expense of a reduction in performance. For example,
when one or several cache lines are permanently damaged,
protection mechanisms disabling faulty lines allow the pro-
cessor operating correctly enlarging its lifetime. However,
depending on the particular location of those faulty lines in
cache, the performance provided by the processor can vary
significantly [8]. Random cache policies included in TRPs
make this degradation to occur more gracefully [28].

For instance, Figure 3 shows the execution time (normalized
w.r.t. the fault-free case) for two EEMBC benchmarks [25],
which is a benchmark suite representative of some automotive
functionalities, as we decrease the cache space available in
fully-associative DL1 caches. As shown, in the case of TRPs
performance decreases gracefully as cache space decreases
once the working set does not fit in cache anymore. Instead,



Fig. 4. Cache Utilization with and without random placement.

execution time in COTS processors remains almost unchanged
until its working set does not fit in cache. Then, execution time
grows suddenly, as it is the case of aifirf when cache space
decreases from 37.5% to 31.25% and tblook from 56.25%
to 50.0%. In the case of set-associative caches, the very same
effect occurs in each individual set as shown in [8].

B. Reducing the bias in resource utilization
With conventional placement algorithms such as modulo,

cache sets access distribution is completely program depen-
dent. On the contrary, with random placement algorithms [13],
[18] accesses to the cache sets are randomly distributed
since random placement algorithms employ a combination of
address tags with random bits from a random seed to generate
the cache index so, for every run (or every time the seed is
changed), a different set is accessed for any given address.
Having a highly biased cache set utilization is expected to
lead to higher degradation since the the most used sets are
more exposed to hot carrier injection (HCI) [10] among other
sources of transistor degradation, since HCI effects are directly
proportional to the activity produced, which in turn depends
on the access distribution across cache sets. In this context,
having set access distributions as uniform as possible is very
convenient to mitigate those aging effects [12]. This can be
achieved easily with random caches when convenient random
placement functions are employed [30]. Figure 4 shows that
almost perfect set access distributions can be achieved with
TRPs. The figure shows access distributions for IL1 (left) and
DL1 (right), without randomization (top) and with randomiza-
tion (bottom). Vertical axes are normalized w.r.t. the modulo
placement case (without randomization).

C. Power stability and voltage noise resilience
TRPs performance is more stable than that of time-

deterministic processors. The reason is that randomization
removes systematic pathological scenarios that can lead to cor-
ner situations with significantly bad performance. Pathological
cases occur, for example, due to systematic cache conflicts
associated with repetitive access patterns resulting in conflict
misses. Pathological situations can also occur in the access to
the shared resources when requests in a loop systematically
experience the worst possible alignment w.r.t. the arbitration
window in a round-robin or FIFO arbitration scheme. On
the contrary, in a randomly arbitrated resource the particular
order in which resources are served can be associated to a
given probability thus, reducing the possibility of having such
extreme situations.

Fig. 5. Fast Fourier transform of the power consumption of pathological
patterns in a TRP (a) and in an time-deterministic one (b).

Controlling the occurrence of pathological scenarios is not
only important to achieve performance stability but also to
increase the robustness of the system. On one hand, pathologi-
cal scenarios negatively affect thermal and power profile of the
system since they can potentially lead to the systematic occur-
rence of recurrent high power demanding events. Exposing the
systems to high voltage and temperature conditions has been
shown to significantly shorten the lifetime of processors [17].
On the other hand, the synchronization of power demanding
events and the frequency at which those events occur has been
shown the factors with major contribution to the voltage noise
in the power distribution networks [9]. Voltage noise is created
by power fluctuations and this effect is amplified when such
fluctuations are repetitively caused by the synchronization of
high power consuming events.

TRPs break systematic alignments of the events for which
randomization techniques are applied. Thus, TRPs can dimin-
ish the impact of voltage noise effects. Figure 5 shows the fast
Fourier transform of the power consumption resulting from the
execution of a LRU pathological case in a time-deterministic
processor (a) and in a TRP (b). As shown in the plot with
a time-deterministic (conventional) processor with LRU high
demanding power events can occur at a given frequency,
whereas in a TRP such behavior is avoided by means of
randomization. For deterministic designs, such events can get
aligned with the resonance frequency of the power network
distribution which will significantly amplify the impact of
voltage noise fluctuations [9]. TRPs help decreasing the prob-
ability of occurrence of these events.

IV. SECURITY PROPERTIES OF TIME-RANDOMIZED
PROCESSORS

Side-channel attacks extract secret key data by exploiting
the information leakage resulting from the physical imple-
mentation of the system. The most common side channel
attacks are based on exploiting the information leakage of
cache conflicts. Additionally, power analysis attacks have also
been shown effective to threat system’s security.

A. Cache side-channel attacks
Cache side channel attacks can be classified into contention-

based attacks and reuse-based attacks [22]. In contention-based
attacks the attacker may contend for the same cache set with
the victim process and the contention results in eviction of



Fig. 6. Power consumption variability in a TRP.

one’s cache line by the other. If the contention and eviction
is deterministic, the attacker can infer the memory address of
the victim based on the cache set it is mapped. Examples of
this type of attack are the prime-probe [24] and the Evict-
time [23]. Reuse-based attacks like the one in [4] exploit the
fact that previously accessed data are loaded in the cache
making execution time of the attacker to decrease if it accesses
the same addresses the victim accessed.

Layout randomization has been shown an effective mecha-
nism to protect against contention-based attacks [31]. Since
TRPs are based on the utilization of random cache de-
signs [13], these processor designs are inherently protected
from contention-based attacks. On the contrary, as pointed out
in [22], layout randomization is not enough to protect against
reuse-based attacks since they do not care about the location
of cache memory lines. Thus, additional randomization mech-
anisms such the one proposed in [22] are required. Similar
mechanisms can be employed on top of TRPs to achieve
enhanced security. However, as we explain later, we believe
that controlling the sources of jitter will naturally enhance the
security properties TRPs provide. Or in other words, the more
features are time-randomized the more protected the processor
will be.

B. Power analysis side channels

Power dissipation can also leak cryptographic information.
When instructions are executed with fixed-time repetitive
executions, they provide similar power profiles. Therefore,
since cryptographic algorithms use multiple iterations for a
given secret key, attackers can match the similar power profiles
obtained to infer the cryptographic data. Randomizing the
execution time delay to achieve protection against power
analysis attacks was proposed in [26], where authors introduce
random noise by means of randomly interleaving dummy
instructions with the actual code when the execution of en-
cryption algorithms is detected. Conversely, TRPs provide time
randomization by default by randomizing the existing proces-
sor jitter and thus, avoid both inserting dummy instructions
and having to detect the execution of cryptographic algorithms.
Figure 6 shows the power variability resulting from running
1000 times an encryption algorithm in the TRP described in
Table I.

V. TOWARDS SECURE AND RELIABLE HIGH
PERFORMANCE TIME RANDOMISED PROCESSORS

While TRPs proposed so far have focused on relatively
simple processors targeting safety critical systems, we see
potential for extending this paradigm to other domains with
the aim of reconciling predictability, performance, security,
and reliability aspects in a one-fits-all processor design.

A. Randomization granularity

In TRPs randomization is applied to those elements intro-
ducing jitter in the application’s execution time. Therefore,
the granularity at which randomization is applied completely
depends on the particular processor architecture. Recalling the
processor configuration shown in Table I, we observe that ran-
domization in this relatively simple processor is only applied
to caches and shared resources arbitration limiting the security
and reliability capabilities of the randomization approach. For
instance, the TRP presented in Table I is not sufficiently
protected against reuse-based attacks [4]. To overcome this
issue, or in other words, to increase reliability and security
properties of TRPs, randomization should occur at a finer
granularity. Luckily, high-performance processors incorporate
a higher number of features that have to be randomized to
make such processors compatible with PTA as explained later.
The randomization of such hardware features will contribute to
improve security and reliability properties of TRPs and reduce
the need for introducing fine grain randomization techniques
that only serve to enhance security or reliability properties
of the processor. For instance, randomization approaches such
as random pipeline stalls insertion [29] can enhance processor
security but are not required for the application of probabilistic
timing analysis techniques and cost performance.

B. Further Hardware Randomization

Applying EVT on top of more complex processor archi-
tectures would require controlling additional sources of jitter.
Hereafter, we show two examples of hardware features where
randomization is required to make the processor probabilisti-
cally analyzable.
Data prefetchers. The latency of cache misses can be partially
hidden by using a data prefetcher. Thus, software execution
time is significantly impacted by whether the data it requires
were previously fetched by the prefetcher or not. Like in the
case of caches, the effectiveness of the data prefetcher depends
on the particular addresses the software uses and the policy
employed to determine the data that are prefetched into the
cache. For instance, one of the most common (and basic)
prefetching policies is known as “one block lookahead”, which
prefetches a cache line c+1 when the cache line c is accessed in
the cache. To allow TRPs incorporating data prefetchers, new
prefetching policies able to avoid systematic effects introduced
by data prefetching mechanism are required. Again, random-
ization techniques appear to be the most suitable approach
to deal with the systematic execution time effects introduced
by prefetchers. Additionally, randomizing prefetching policies
can also enhance TRPs protection against reuse-based attacks
in a similar way [22] does.
Out-of-order execution. Out-of-order processors severely
complicate the derivation of timing bounds due to the presence
of timing anomalies. Timing anomalies are expected when a
local execution time increase can lead to a global execution
time decrease due to different resource allocations in an
architecture. Since the timing anomalies cannot be effectively
avoided in out-of-order processors, randomization appears as
an effective means to deal with them. The randomization of
resource allocation decisions would lead to a system where
the impact of timing anomalies is randomized and in turn,
probabilistically quantifiable.



C. Other applications of EVT
By construction, timing events occurring in TRPs can be

modeled as a random variable, which allows applying EVT to
reason about extreme effects occurring due to the particular
alignment of those events. The main goal of TRPs is to allow
attaching a (very low) probability to the alignment of events
leading to the highest execution times. However, the same
approach can be used to determine other extreme behavior
that is of interest in processor design.
Voltage Noise. As explained before, power distribution is
subject to voltage noise conditions that can lead to operational
failures. The magnitude of voltage noise directly depends
on the power fluctuations occurring in the processor as a
consequence of the switching activity and how the activity of
the different cores and within-core hardware resources aligns.
To make processors resilient to such voltage fluctuations,
extreme and very lowly probable alignment conditions have to
be considered [9]. TRPs can help reducing overdimensioning
safety margins by allowing an effective and probabilistic
quantification of such extreme events. If the worst possible
alignment of events is below a given failure probability, apply-
ing safety margins to these improbable events is unnecessary.
Maximum Power Density. With the current transistor inte-
gration levels, power density limits have become a significant
performance limitator of current high-performance processor
designs. If processors operate above their maximum power
density allowed, this can have consequences on the integrity
of the processors and can cause unrecoverable damage. Gen-
erally, processors are designed to make average workloads to
operate below the threshold. However, the potential occurrence
of systematic pathological behavior that is hard to avoid and
predict can cause the system to operate above the threshold.
When the threshold is trespassed, the system enters in a
safe state where performance is decreased due to a voltage
and/or frequency reduction to protect the processor. EVT
applied on top of TRPs can be a useful tool to determine
the likelihood of reaching such operating conditions and thus,
help to appropriately designing system margins.

VI. CONCLUSIONS

In this paper we review and analyze the reliability and
security properties of TRPs. As shown, TRPs provide unique
properties that make them an ideal baseline to combat some
of the reliability and security challenges that high-performance
processors have to face these days.

Finally, we have also elaborated on the suitability of uti-
lizing TRPs in markets other than the safety-critical systems
one. Our conclusions are that, while some research and
development is still needed to enable an efficient utilization
of randomization techniques in some of the jittery hardware
features included in most of the high-performance processors
available today, the approach is promising since it will bring
reliability and security properties needed in future processor
designs by construction.

ACKNOWLEDGMENTS

The research leading to these results has received fund-
ing from the European Community’s Seventh Framework
Programme [FP7/2007-2013] under the PROXIMA Project
(www.proxima-project.eu), grant agreement no 611085. This
work has also been partially supported by the Spanish Ministry
of Science and Innovation under grant TIN2015-65316-P

and the HiPEAC Network of Excellence. Jaume Abella has
been partially supported by the Ministry of Economy and
Competitiveness under Ramon y Cajal postdoctoral fellowship
number RYC-2013-14717. Carles Hernández is jointly funded
by the Spanish Ministry of Economy and Competitiveness and
FEDER funds through grant TIN2014-60404-JIN.

REFERENCES

[1] Aeroflex Gaisler. LEON 3 Processor. http://www.gaisler.com/.
[2] P. Alfke. Efficient Shift Registers, LFSR Counters, and Long Pseudo-

Random Sequence Generators. Xilinx, 1996.
[3] ARM. ARM Cortex-R Series Processors Specification. http://infocenter.

arm.com/help/topic/com.arm.doc.set.cortexr/index.html.
[4] Daniel J. Bernstein. Cache-timing attacks on aes. Technical report,

2005.
[5] F.J. Cazorla et al. PROARTIS: Probabilistically analysable real-time

systems. ACM TECS, 2012.
[6] F.J. Cazorla et al. Upper-bounding program execution time with extreme

value theory. In WCET Workshop, 2013.
[7] L. Cucu-Grosjean et al. Measurement-based probabilistic timing analysis

for multi-path programs. In ECRTS, 2012.
[8] J. Abella et. al. Low vccmin fault-tolerant cache with highly predictable

performance. In MICRO, 2009.
[9] R. Bertran et. al. Voltage noise in multi-core processors: Empirical

characterization and optimization opportunities. In MICRO ’14, pages
368–380, Cambridge, UK, December 2014. IEEE Computer Society.

[10] V. Huard et al. Managing sram reliability from bitcell to library level.
In Reliability Physics Symposium 2010, May.

[11] Y. Kim et. al. Rowhammer: Reliability analysis and security implica-
tions. CoRR, abs/1603.00747, 2016.

[12] E. Gunadi, A. A. Sinkar, N. S. Kim, and M. H. Lipasti. Combating
aging with the colt duty cycle equalizer. In MICRO 2010.

[13] C. Hernandez et al. Random modulo: a new processor cache design for
real-time critical systems. In DAC, 2016.

[14] Infineon. AURIX - TriCore datasheet. highly integrated and perfor-
mance optimized 32-bit microcontrollers for automotive and industrial
applications, 2012.

[15] International Organization for Standardization. ISO/DIS 26262. Road
Vehicles – Functional Safety, 2009.

[16] J. Jalle, L. Kosmidis, J. Abella, E. Quinones, and F.J. Cazorla. Bus
designs for time-probabilistic multicore processors. In DATE, 2014.

[17] Joonho Kong, Sung Woo Chung, and Kevin Skadron. Recent thermal
management techniques for microprocessors. ACM Comput. Surv.,
44(3):13:1–13:42, June 2012.

[18] L. Kosmidis et al. A cache design for probabilistically analysable real-
time systems. In DATE, 2013.

[19] L. Kosmidis et al. Probabilistic timing analysis and its impact on
processor architecture. In DSD, 2014.

[20] Samuel Kotz and Saralees Nadarajah. Extreme value distributions:
theory and applications. World Scientific, 2000.

[21] K. Lahiri, A. Raghunathan, and G. Lakshminarayana. LOTTERYBUS:
a new high-performance communication architecture for system-on-chip
designs. DAC ’01, pages 15–20, 2001.

[22] Fangfei Liu and Ruby B. Lee. Random fill cache architecture. In MICRO
2014.

[23] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and
countermeasures: The case of aes. In RSA Conference on Topics in
Cryptology, 2006.

[24] Colin Percival. Cache missing for fun and profit. In Proc. of BSDCan
2005, 2005.

[25] Jason Poovey. Characterization of the EEMBC Benchmark Suite. North
Carolina State University, 2007.

[26] H. Qu, J. Xu, and Y. Yan. A random delay design of processor against
power analysis attacks. In 2010 10th IEEE International Conference on
Solid-State and Integrated Circuit Technology, Nov 2010.

[27] M. Slijepcevic et al. DTM: Degraded test mode for fault-aware
probabilistic timing analysis. In ECRTS, 2013.

[28] M. Slijepcevic et al. Timing verification of fault-tolerant chips for safety-
critical applications in harsh environments. IEEE Micro, 34(6), 2014.

[29] Imagination Technologies. Mips32 m5100 processor core family
datasheet. Technical report, 2031.

[30] D. Trilla, C. Hernandez, J. Abella, and F.J. Cazorla. Resilient random
modulo cache memories for probabilistically-analyzable real-time sys-
tems. In IOLTS, 2016.

[31] Zhenghong Wang and R. B. Lee. A novel cache architecture with en-
hanced performance and security. In 2008 41st IEEE/ACM International
Symposium on Microarchitecture, pages 83–93, Nov 2008.


