

UNIVERSITY OF WISCONSIN-MADISON

End-to-End Stochastic Computing

Mikko Lipasti and Carly Schulz

February 4, 2017

Executive Summary

- In systems with sigma-delta modulated sensors, increase performance by operating directly on data instead of converting (End-to-end)
- Stochastic computing has advantages in end-to-end systems while it has challenges that prevent it from being used in other applications
- We implement a prototype audio mixer system

Background

- Stochastic representation
 - Represent the number, n, you are trying to send by sending a 1 with probability n for a set bit stream
 - 0011011001 would be a representation of 5
- Probabilistic Calculus introduced in 1960s by Von Neumann
 - Trivial implementation of multiplication using AND gates
 - Bernstein polynomials any finite interval function that maps to another finite interval
 - Can implement the polynomials with a series of adders and multiplexers

Advantages of Stochastic Computing

- Error Tolerant
 - Soft errors (bit flips) are tolerated well, no bit is more important than another
- Smaller circuit size
 - Simple logic makes the gate cost low
- Shorter critical paths
 - Simpler logic allows higher clock frequencies

Traditional Challenges

- Representation costs in terms of bits due to precision requirements
- Generating the stochastic numbers has high energy costs
- Possible increases in length of computation due to length of bit stream, gate invocations are higher
- Function mapping errors because the Bernstein Polynomial is an approximation

Implementation

Audio system using pulsedensity modulated representation. Altera Cyclone IV FPGA

Pulse Density Modulated (PDM) Signals

Sample PDM encoded sine waves.

Blue represents a 1 while the

white represents a 0.

Traditional Implementation Block Diagram

PDM Block Diagram

Prototype's Advantages

- Does not have any conversion costs
- Simplified datapath
- More energy efficient (estimated)

Evaluation

Synthesized PDM design on board and also created a pulsecode modulated (PCM) based design that is synthesizable on the same board.

PCM Model

- Downsample signal from 3 MHz to 24 KHz
- Filtering is performed on the PCM data
- Converts back to PDM through sigma-delta modulation

Evaluation

- PDM to PCM conversion Cascaded integrator-comb
- Biquad filters PDM integrates and delays through RAM for 128 steps, PCM keeps conventional implementation
- PCM to PDM conversion 128x interpolation with 3stage filter cascade of 3rd order CIC to a second order sigma-delta modulator

Biquad Filter

 In the PDM implementation, there is a 128 bit buffer in the filter to match the sampling rate

Area Comparison

Logic Elements

Area Comparison

RAM

Conclusion

Stochastic computing can work well for single-bit stream inputs and outputs

There are two other prototypes in our lab that this would make sense in practice:

- Drone with an onboard homing program
- Robotic arm using visual input to calculate kinematics equations

Acknowledgements

Thanks to Eric Hoffman who designed and built the demo board

Supported in part by NSF grant CCF-1615014

Questions?

February 4, 2017