
End-to-End Stochastic Computing
Mikko Lipasti

Department of Electrical and
Computer Engineering

University of Wisconsin-Madison
Madison, WI

Email: mikko@engr.wisc.edu

Carly Schulz
Department of Electrical and

Computer Engineering
University of Wisconsin-Madison

Madison, WI
Email: cschulz8@wisc.edu

Abstract—Embedded systems that require high performance
hardware for signal processing, optimization, and control have
historically relied on optimized fixed-point algorithms deployed
on low-power microprocessors and/or digital signal processors.
However, the sensing and actuation interfaces in such sys-
tems increasingly rely on oversampled, single-bit sigma-delta-
modulated (SDM) representations of data inputs and control
outputs. Conventional computing substrates requires conversion
both on the input side and on the output side in order to
effectively interface with physical systems that utilize SDM rep-
resentations. This position paper argues that embedded systems
should be designed to sense, process, compute, and actuate using
an approach called stochastic computing, which operates directly
on the oversampled SDM representation that is a natural fit for
interfacing with physical systems. Stochastic computing offers
numerous advantages in terms of datapath simplicity, robustness,
error tolerance, and support for variable precision, all of which
make it an appealing approach for these embedded applications.
On the other hand, stochastic computing has a number of
limitations that make design of entire systems based on this
approach quite challenging. This paper outlines some of those
challenges and details our experiences with building such a
prototype system.

I. INTRODUCTION

Presently, digital binary representation is the well-
established standard for computation. As technology continues
to shrink in size, the circuits become more error-prone and
unpredictable [1]. With the limits of the deterministic binary
computing, these unpredictable elements have to be guarded
against and often end up having a high hardware cost [2].

An alternative paradigm that was proposed in the 1960s
is stochastic computing. Stochastic computing is based on
probabilities and inherent uncertainties and works well with
the same uncertainties that make deterministic computing
more difficult [1]. Interest in stochastic computing was driven
by contemporary concerns about device and circuit reliability,
and was in fact rooted in Von Neumann’s even earlier work
on probabilistic calculus. As device technology matured, these
concerns were successfully addressed by improvements in
the reliability of the underlying devices and circuits used
as building blocks in computing systems, and so interest in
stochastic computing waned. More recently, similar reliability
concerns have been raised regarding emerging, post-CMOS
device technologies, and there has been a resurgence of interest
in stochastic computing, including a number of proposals

for using it to replace conventional, deterministic computing
models for a broad array of applications.

Stochastic computing has a number of advantages as well as
drawbacks, and it is unlikely that it will serve as a wholesale
replacement for conventional computing. However, there are
domains where it is a compelling and very natural fit. This
paper focuses on a class of systems where the most natural
representation for both input and output data is one that fits
well within the stochastic computing paradigm. Specifically,
we are interested in applying stochastic computing to replace
a conventional data path in systems that required high per-
formance hardware for tasks including signal processing, task
optimization, and control, but that also interface to the physical
world using data representations that appear very similar to the
probabilistic bit streams utilized by stochastic computing.

Systems that interact with the physical world must both
sense their environment and control actuators that provide
them with the ability to manipulate physical elements. On the
sensing side, oversampling, single-bit sigma-delta-modulated
(SDM) representations have become increasingly popular due
to their robust performance and ease of implementation. While
they require higher data rates for comparable accuracy, the
physical design simplicity of both the ADC (single-bit SDM)
over more complex multi-bit ADCs, as well as the ease of
system design (single-bit, serial interconnects like SPI) has
made them the standard choice for applications like digital
audio processing. Similarly, on the control side, pulse-width
modulation (PWM) has largely replaced earlier, more complex
multi-bit or level-based digital-to-analog (DAC) approaches.
In the PWM approach, the control output also has only one
bit of DAC precision (it is either on or off), but the width of
the pulses is modulated to provide a wider dynamic range.
Both SDM and PWM represenations are a natural fit for
stochastic computing, since signals in these formats can be
easily consumed as inputs or generated as outputs by SC
datapaths.

This paper argues that the datapath simplicity, robustness,
error tolerance, and support for variable datapath precision
provided by the stochastic computing approach makes it a
natural fit for such applications. We first discuss the history of
stochastic computing and the tradeoffs associated with using
it, and then describe a prototype system—a digital audio
equalizer—that we have implemented, and conclude the paper

with an assessment of the advantages of this paper along with
some thoughts on future work.

II. BACKGROUND

A stochastic representation of a number is a bit stream of
ones and zeros where the desired transmission value is the
probability of whether a given bit is a one [3]. This method
of representation is inherently fault tolerant and provides an
opportunity as we reach the limits of Moores law and explore
new technologies [4]. The field of stochastic computing has
gained attention recently for its applications in LDPC decod-
ing, image processing, filters, and fault tree analysis [1].

A. Probabilistic Calculus

Although he is credited with the traditional computing
model and computer architecture as we know them today, Von
Neumann also began the gestation of stochastic computing
with his lecture on performing operations on probabilistic
values. He detailed his probabilistic calculus methods using
stochastic bit streams and developed automata to illustrate their
function. Using probabilistic methods, multiplication becomes
trivial to implement at the gate level and is simply calculated
by feeding both inputs to an AND gate. As long as the inputs
are not correlated with each other which is handled by their
random nature, then the result of the gate will be, with high
probability, the result of the two values multiplied together
[5]. The development and proof of such calculus shows that
exploiting stochastic numbers can result in drastically simpler
logic to perform operations such as multiplication, division,
etc.

Stochastic computing computes Bernstein polynomials with
a block of adders and a block of multiplexers. Other functions
beyond polynomial functions can be mapped as approxima-
tions of a Bernstein polynomial. Stochastic functions can
implement any finite interval function that maps to another
finite interval [4].

B. Benefits Over Deterministic Computing

1) Error Tolerant: Stochastic computing is quite error
tolerant and is well adapted to neural networks. It has several
applications in neural networks and image processing due to
its parallel nature [3]. Since the bits are randomly set or not set
within a predetermined stream of bits, stochastic computing is
rather tolerant of soft errors, a flip of a bit, than traditional
computing where specific bits have much larger importance
[4]. A more error tolerant method of computing requires less
hardware resources to be placed in error correcting or guarding
techniques. Stochastic bit encodings have been shown to gen-
erate correct outputs in applications such as image processing
even with soft error rates as high as 30% [6]. In stochastic
computing, the hardware is designed so as to allow errors
or without the over-designing mechanisms in use today and
pushes the handling of errors up to the software level [4].

2) Circuit Size: Using Stochastic numbers allows the im-
plementation of more complicated computations with very
simple logic and low gate cost as a result [7]. In addition to the
low gate cost multiplication and division, complex computa-
tions such as Taylor expansions of the exponential function and
square-root function can be implemented with a small number
of gates under this computing model . Traditional deterministic
binary encoding requires much more complex logic elements
or relies on software to compute these functions[4].

3) Timing: Along with the decreased hardware cost, the
size often results in a shorter critical path which allows
a stochastic circuit to operate at higher clock frequencies
[6]. This could result in a faster overall computation time,
depending on the length of the bit stream that is being operated
on.

C. Traditional Challenges

There are some obstacles that prevented stochastic comput-
ing from proliferating. Some issues

1) Representation Cost: A large one is that there is a higher
cost in terms of bits required to represent the number with
a certain degree of precision when compared to traditional
digital representations. That issue creates another, the cost
of multiplication in terms of gate invocations can be quite
high for stochastic representations as the number of bits
increases [8]. Longer streams of bits that are required for
stochastic computing may end up consuming more power
than expected from a small and simple circuit. When using
stochastic computing for issues with low precision require-
ments, these representation costs can be somewhat mitigated
by the decrease in the length of the bit stream [7]

2) Energy Consumption: Generating stochastic numbers
from the deterministic binary numbers consumes more energy
than leaving it in the deterministic form [7]. This is not an
issue when using SDM signals in the end-to-end stochastic
computing method. What does become an issue is the poten-
tially higher energy cost from computing with long bit streams
of stochastic numbers [7].This is slightly alleviated by pushing
the burden of error correcting beyond hardware [4]. Energy
efficiency of the system is improved when the design can be
optimized for a non-zero error rate [2].

3) Timing: In serial encoding, computation time is a sig-
nificant factor. (If a parallel implementation is being used,
then area is the challenge here.) The length of the bit streams
needed to preserve precision leads to longer computation
times, even if the clock cycles can be shorter than in traditional
processors [4]. Stochastic computing cannot be pipelined
which makes high throughput difficult to attain [1].

4) Errors: There is error introduced through mapping the
function to a Bernstein approximation in addition to the
normal quantization errors that one would expect in hardware
[4]. Noise also contributes to the errors in this method of
computing. Since stochastic numbers are restricted to the
[0,1] range, as the computation progresses the power of the
scaled stochastic number decreases which leads to the SNR
decreasing as well. It should be noted that in the case of

Fig. 1: Prototype PDM Equalizer Board.

transient noise, stochastic computing tolerates the noise better
than binary computing [1].

These issues try to imply that stochastic representations may
be more costly than they are worth. We argue that the benefit of
eliminating conversion circuits makes stochastic computing a
competitive option in systems where both the input and output
are encoded in a stochastic way, such as SDM signals.

III. IMPLEMENTATION

This section describes a system prototype that we have built
that utilizes principles from stochastic computing to implement
a system that processes audio signals end to end using a
pulse-density-modulated representation that is a natural fit for
stochastic arithmetic. The prototype system board is illustrated
in Figure 1. The digital logic that utilizes stochastic computing
principles is implemented using a DE0-nano development
board from Terasic[9]. This board contains an Altera Cyclone
IV FPGA, as well as interface circuitry to the custom daughter-
card, which contains a stereo class-D amplifier, connections
for two PDM digital microphones (shown attached to ribbon
cables behind the board), a 3.5mm audio input with PDM
ADC, as well as a set of potentiometer sliders used for con-
trolling volume as well as five bands of frequency components
to realize an audio equalizer.

Pulse-density modulation is an approach for encoding time-
varying signals that utilizes an oversampled, single bit to
represent complex waveforms[10]. Figure 2 shows two ex-
amples of sine waves at different frequencies encoded in
PDM format. PDM format has become very popular as a
representation in the audio domain, and is very commonly
used in modern cellular phones, where the on-board PDM
microphones are attached to the rest of the system with a low-
cost, single-wire PDM bus that it typically over-sampled at
around 3MHz. The PDM microphones contain a low-cost but
high precision sigma-delta modulator (SDM) [11] that converts
the analog audio signal captured by the MEMS microphone
into a series of PDM pulses. Our prototype includes two such
PDM microphones connected to the system, but also provides
a 3.5mm audio jack connected to a low-cost PDM ADC that
converts standard analog audio from any sound device (e.g.
a portable MP3 player) to an oversampled PDM stream. The

main advantage of using PDM input is the simple interface
circuitry and relatively low cost and ease of design of sigma-
delta modulators that nevertheless provide very high audio
fidelity[11].

(a) An example of PDM of 100 samples of one period of a sine wave.
1s represented by blue, 0s represented by white, overlaid with the sine
wave.

(b) A second example of PDM of 100 samples of two periods of a
sine wave of twice the frequency

Fig. 2: Examples of pulse-density modulation (aka SDM).
From [10]

Class-D amplifiers are switching amplifiers that do not
attempt to utilize the linear region of a transistor for gain, as
in conventional amplifiers, but instead rapidly switch the gain
device (a MOSFET) based on a train of pulses which repre-
sents an audio signal encoded in the above PDM format[12].
Class-D amplifiers are extremely efficient and relatively easy
to design, since they do not suffer from the design complexities
and vulnerabilities of classic amplifiers that were extremely
sensitive to the transfer characteristics of the amplifying MOS-
FET.

In summary, we have built a protyping platform that takes
as input audio signals in PDM format, operates on them while
maintaining that representation, and drives output circuitry
(class D amplifiers) that then drive actuators (speakers) that
create a physical audio signal. Within this context, the advan-
tages of designing circuitry that maintains the original input
and output data representation are clear.

Figure 3 shows a block diagram of the digital circuitry we
have implemented on the Altera FPGA in our prototype sys-
tem. As shown, it supports two identical audio channels (left
and right). Each channel provides volume control followed by
five bands of equalization targeted at frequencies ranging from
very low (bass) to very high (treble), and allowing the user to
attenuate or amplify these frequency bands to shape the final
sound.

In a conventional digital signal processing-based design,
the audio inputs would first be converted a pulse-code mod-
ulated PCM format with multiple bits of precisions for each
sample (e.g. 16-bit samples at 44KHz per channel for CD-
quality audio). This conversion task requires a fairly heavy-
weight cascaded integrator comb (CIC) filter to reconstruct a
lower-sample-rate multi-bit signal from the oversampled PDM
representation[13]. Following this conversion, standard digital
filtering techniques would be used to implement each of the
filtering stages shown, typically using cascaded biquad filters
[14]. Such an implementation would require high-performance
digital signal processor cores capable of executing high-
precision (at least 16x16=32, but preferably higher) multiply-
accumulate operations at a fast rate. Finally, after the final

Fig. 3: PDM Equalizer Block Diagram.

equalizer filter stage, the conventional design would require a
multi-bit digital-to-analog converter (DAC) in order to supply
an analog output to a conventional amplifier design. In our
prototype, this analog output would then be converted back to
a PDM bitstream to drive the gain MOSFET inside the class
D amplifier, leading to an additional level of inefficiency and
added noise from the redundant DAC-ADC stages.

Instead, we have implemented each filtering stage with a
design that is functionally equivalent to a biquad filter, but
utilizes principles of stochastic computing to dramatically
simplify the arithmetic datapath. For example, since the PDM
input stream represents values with a stream of 0/1 bits that
are numerically weighted as -1/+1, all digital multipliers in
the design have been replaced with simple, reduced-precision
adders. Furthermore, since even the oversampled data rate of
3MHz is still very low compared to the speed of modern
digital circuitry, even on FPGAs, these adders need not use
high-speed and power-hungry circuit topologies. In the end,
the datapath for realizing these filters is substantially simpler
and more energy-efficient than a conventional digital baseline.

Finally, since the filtering circuitry operates directly on
PDM format data, no input conversion or output conversion is
needed. Input from a PDM microphone is consumed directly,
while the final filter stage outputs can be used to directly drive
the gain MOSFETs in the class D amplifier.

IV. EVALUATION

We have implemented the design from the preceding section
and synthesized it to target the Altera Cyclone IV FPGA on
our DE0-nano development board [9]. To provide a reasonable
baseline of comparison, we have also designed a conventional
PCM-based design that can be synthesized for the same FPGA.
There are three key differences with respect to the design
shown in Figure 3:

• The PDM digital input is downsampled (decimated) and
converted to 16-bit PCM format.

• The signal processing components (biquad filters) operate
on the PCM data.

• The outputs from the rightmost filters are converted from
PCM back to PDM via interpolation and sigma-delta
modulation.

These changes introduce additional overhead for the format
conversion, but also reduce the operating frequency of the
signal processing core substantially. We elaborate on these
changes in the following paragraphs.

A. PDM to PCM Conversion

In our design, the PDM input arrives at a rate of 3.125MHz
per channel. All the filters in the system (both PDM-based
and PCM-based) are designed with a sampling frequency of
24.414KHz, corresponding to the input PDM sample rate di-
vided by 128 1. In order to maintain the same filter coefficients
for our biquad filters, we need to downsample (by 128x) the
3.125MHz PDM input to a 24.414KHz rate. We used a low-
cost, 3-stage cascaded integrator-comb (CIC) Hogenauer filter
[15] modeled after the scheme described in a blog post from
Cheshire Engineering [16], but implemented in Verilog rather
than C.

B. Biquad filters

The biquad filters in our design assume a sampling fre-
quency of 24.414KHz, and are parameterized based on the
equations found here [17]. The bass and treble filters are
configured as low shelf and high shelf, while the three mid-
range filters are configured as peak filters. Each filter can be
parameterized to provide from -8dB to +8dB gain for each
band. In the PDM design, each biquad simply integrates the
five biquad coefficients, stored as 16-bit fixed–point values,
based on the five binary PDM inputs (the current input and
the last two inputs, as well as the last two outputs), and
then quantizes the integrated sum into a single PDM bit. The
delayed inputs and outputs are buffered for 128 time steps to

1This sampling frequency is clearly too low for high-fidelity audio appli-
cations, but we found it acceptable for our boombox scenario.

realize the 24.414KHz sampling rate; this delay memory is
mapped to block RAMs on our FPGA prototype.

In the PCM baseline, we simply implement these biquad
filters in the conventional fashion, using fixed-point multi-
plication and addition. Since the performance requirement is
very low at our 24.414KHz sample rate, we implement the
multipliers using a multicycle accumulator-based design. To
further reduce hardware cost in the baseline, we share that
single multiplier to integrate all five biquad terms (i.e. each
biquad evaluation consists of 5x16=80 accumulate operations).
Finally, we quantize the output to 16 bits and use 16-bit
registers to implement the biquad’s delay buffers.

C. PCM to PDM Conversion

The biquad filter cascade generates a 16-bit filtered PCM
result at a rate of 24.414KHz. The final stage in our PCM base-
line must convert this to a PDM representation at 3.125MHz to
drive our class-D audio amplifier. This requires interpolation
by a factor of 128x, which we accomplish with a 3-stage
filter cascade, where each stage uses 3rd-order CIC filters that
interpolate at rates of 2x, 8x, and 8x, respectively, for a total
upsampling of 128x. The final interpolated results are then fed
to a second-order sigma-delta modulator.2, which generates
a PDM stream at 3.125MHz. The cascaded CIC filters in
this conversion step are surprisingly expensive, as the integer
datapath in each must be sized to avoid overflow, requiring an
additional bit of precision for each order and each stage.

D. Area results

In order to assess the area cost of the proposed PDM design,
we synthesized it in the Altera Quartus 16.1 environment.
Table I reports the number of logic elements (LEs) required
by the biquad filters, by the conversion logic (in the baseline
design), and everything else (Misc, which includes control
logic for reading equalizer settings and parameterizing the
biquads accordingly, etc). The relative LE breakdown was
obtained from the synthesis report (pre-place and route) and
the LE counts shown are normalized to the final post-PR LE
count.

As can be seen from Table I, the overhead of format conver-
sions in this environment is substantial (39% of the total area
required for the baseline PCM design). This is particularly true
of the PCM to PDM conversion block, which requires wide
arithmetic and delay elements to implement the multi-stage
CIC filter (progressively wider in the later stages). The PDM
biquad filters are about 20% larger than the PCM baseline.
Since both designs are based on accumulator-style multipliers
using just a single adder, this overhead is mostly caused by the
PDM quantizer, which is a first-order sigma-delta modulator.
This requires an additional adder/subtractor and register for
carrying over quantization error, whereas the PCM quantizer
simply truncates the low order bits. However, despite the
modest area increase per filter, the PDM design is attractive
from an efficiency perspective: the vast majority of the FPGA

2Again, inadequate for a high-fidelity audio solution, but adequate for a
boombox

resources are consumed for useful work (filtering), rather than
format conversion. The majority of the RAM in both designs is
used by the biquad parameter lookup RAM (16kb); this is used
to store the biquad parameters that are chosen for each filter
based on the equalizer settings. The PDM biquads also utilize
RAM blocks for their delay memories, which requires 3kb of
storage across all ten biquads. This leads to an increase of
19% in overall RAM consumption, and highlights the storage
inefficiency of unary representations, which is one of the major
shortcomings of PDM-based processing.

It is also worth pointing out that both the baseline PCM
and proposed PDM designs are first-pass efforts at building a
working prototype, and there are numerous hardware optimiza-
tions that could significantly affect the area and performance
of the designs. Exploration of such optimizations is left to
future work.

V. CONCLUSIONS AND FUTURE WORK

This paper argues that stochastic computing can form a
compelling computational substrate for systems where inputs
and outputs are encoded as a single-bit stream. We have
built a prototype system that operates directly on such a
bit stream to implement an audio equalizer. This system
avoids the overheads of input and output conversion that are
mandatory in conventional digital signal processing datapaths
that operate on pulse-code-modulated (PCM) data, and also
simplifies the datapath hardware, since arithmetic operations
like multiplication can be implemented at much lower cost on
serial PDM bitstreams. Overall, with respect to a conventional
PCM baseline equalizer, the PDM design reduces logic area
by 32%, but does increase RAM usage by 19%.

Evaluating the energy efficiency of the PDM design presents
a challenge; the approximate power modeling provided by the
Quartus tool relies on a single activity rate parameter and
returns power results for the two designs that are 1) dominated
by the static power of the chip, and 2) differ only marginally in
terms of dynamic power. In future work, we will synthesize
these designs with a standard-cell design flow and evaluate
energy efficiency with sufficient accuracy to determine any
relative benefit provided by the PDM design.

As described and implemented, the cascaded biquad ap-
proach for implementing an equalizer suffers from additive
noise; that is, any noise introduced by the first filter is am-
plified by subsequent stages. When multiple filters are active,
this can lead to very poor audio quality. To avoid this problem,
an alternative architecture that operates the filters in parallel
and mixes the output of each based on the equalizer settings
should lead to a better result. Design of such an alternative is
also left to future work.

Generalizing from this experience with a specific system,
we would argue that future designs for embedded systems
that match these characteristics—systems where the input
and output are most naturally represented as a serial over-
sampled bitstream—stochastic computing forms a natural and
very appealing foundation for dramatically reducing cost and
complexity. We are currently working on prototyping two

Category PCM LE PDM LE PCM RAM PDM RAM
PDMtoPCM 196 (5%) 0 (0%) 0 (0%) 0 (0%)

Biquads 2052 (50%) 2431 (60%) 0 (0%) 3kb (19%)
PCMtoPDM 1386 (34%) 0 (0%) 0 (0%) 0 (0%)

Misc 444 (11%) 327 (08%) 16kb (100%) 16kb (100%)
Total 4078 2758 (68%) 16kb (0%) 19kb (119%)

TABLE I: Area Cost of PDM vs. PCM Equalizer Design

such additional example systems as further evidence for this
assertion. First, we are building a drone system that will
rely on computer vision algorithms for object localization and
optical flow to provide a guidance system for the drone. In
this scenario, the visual input to the drone will be represented
as serial bitstreams that represent features extracted from the
drone’s camera. Our current-generation drone hardware still
relies on conventional pixel-based input from the camera, but
in the future we expect to transition to a camera system similar
to the Inilabs Digital Vision Sensor [18], which reports visual
input using spike trains that strongly resemble single-bit bit-
streams. Similarly, the control output from the drone’s onboard
guidance system is a pulse-width modulated (PWM) stream
that controls the speed of each of the drone’s four fan motors.
Hence, this is a system where the inputs and outputs are most
naturally represented as streams of single-bit binary data, so
we are investigating how best to implement the entire datapath
of the drone’s flight controller using stochastic computing-like
circuitry that operates directly on this data type. Second, we
are prototyping a robotic control arm system that relies on
solving the inverse kinematics problem to position the robotic
arm at a target location[19]. Here again, the visual input to
the robotic controller will come from a camera that ideally
utilizes the Inilabs sensor[18], while the output is once again
a PWM stream that drives rotational actuation in each of the
robot arm’s joints. Solving the inverse kinematics to determine
the correct angular velocity for each joint requires matrix
division, which will present a series of interesting challenges
for deployment on stochastic circuits.

In summary, we argue that stochastic computing can offer
numerous advantages in terms of datapath simplicity, robust-
ness, error tolerance, and support for variable precision, all
of which make it an appealing approach for these embedded
applications where the most natural representations for inputs,
outputs, and computation are serial oversampled bistreams.

VI. ACKNOWLEDGMENTS

The demonstration board for this project was designed and
built by Eric Hoffman. Chenxiao Guan, the teaching assistant
for the Fall 2016 section of ECE 551 (Digital System Design
and Synthesis), as well as all of the 56 enrolled students,
waited patiently for the final specification for this effort and
faithfully implemented it as their course project (thank you!).
This work was supported in part by NSF grant CCF-1615014.

REFERENCES

[1] B. Moons and M. Verhelst, “Energy-efficiency and accuracy of stochastic
computing circuits in emerging technologies,” IEEE Journal on Emerg-

ing and Selected Topics in Circuits and Systems, vol. 4, no. 4, pp. 475–
486, Dec 2014.

[2] J. Sartori, J. Sloan, and R. Kumar, “Stochastic computing: Embracing
errors in architecture and design of processors and applications,” in
2011 Proceedings of the 14th International Conference on Compilers,
Architectures and Synthesis for Embedded Systems (CASES), Oct 2011,
pp. 135–144.

[3] A. Alaghi and J. P. Hayes, “Survey of stochastic computing,” ACM
Trans. Embed. Comput. Syst., vol. 12, no. 2s, pp. 92:1–92:19, May
2013. [Online]. Available: http://doi.acm.org/10.1145/2465787.2465794

[4] W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J. Lilja, “An
architecture for fault-tolerant computation with stochastic logic,” IEEE
Trans. Comput., vol. 60, no. 1, pp. 93–105, Jan. 2011. [Online].
Available: http://dx.doi.org/10.1109/TC.2010.202

[5] J. von Neumann, “Probablistic logics and the synthesis of reliable
organisms from unreliable components,” 1952.

[6] P. Li, D. J. Lilja, W. Qian, K. Bazargan, and M. Riedel, “The
synthesis of complex arithmetic computation on stochastic bit
streams using sequential logic,” in Proceedings of the International
Conference on Computer-Aided Design, ser. ICCAD ’12. New
York, NY, USA: ACM, 2012, pp. 480–487. [Online]. Available:
http://doi.acm.org/10.1145/2429384.2429483

[7] J. P. Hayes, “Introduction to stochastic computing and its challenges,”
in Proceedings of the 52Nd Annual Design Automation Conference,
ser. DAC ’15. New York, NY, USA: ACM, 2015, pp. 59:1–59:3.
[Online]. Available: http://doi.acm.org/10.1145/2744769.2747932

[8] R. Manohar, “Comparing stochastic and deterministic computing,” IEEE
Computer Architecture Letters, vol. 14, no. 2, pp. 119–122, July 2015.

[9] “De0-nano development and education board,” http://www.terasic.com.
tw/cgi-bin/page/archive.pl?CategoryNo=139&No=593.

[10] “Pulse-density modulation,” https://en.wikipedia.org/wiki/
Pulse-density modulation.

[11] “Delta-sigma modulation,” https://en.wikipedia.org/wiki/Delta-sigma
modulation.

[12] “Class-d amplifier,” https://en.wikipedia.org/wiki/Class-D amplifier.
[13] “Cascaded integrator comb filter,” https://en.wikipedia.org/wiki/

Cascaded integrator-comb filter.
[14] “Digital biquad filter,” https://en.wikipedia.org/wiki/Digital biquad

filter.
[15] E. Hogenauer, “An economical class of digital filters for decimation

and interpolation,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 29, no. 2, pp. 155–162, Apr 1981.

[16] “Pdm in a tiny cpu,” https://curiouser.cheshireeng.com/2015/01/16/
pdm-in-a-tiny-cpu/.

[17] R. Bristow-Johnson, “Cookbook formulae for audio eq biquad filter
coefficients,” http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt.

[18] “Dynamic vision sensor,” http://inilabs.com/products/
dynamic-vision-sensors/.

[19] “Inverse kinematics,” https://en.wikipedia.org/wiki/Inverse kinematics.

