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Abstract— After reviewing the key technologies of 

microprogramming, this paper focuses on the utilization of two-

level microprogramming scheme combined with multiprocessor 

parallelism. Based on our experience by the development of the 

two-level microprogrammed multiprocessor machine, called 

MUNAP, and the increasing importance of reconfigurable 

parallel architecture, we propose a new two-level controlled, 

parallel reconfigurable architecture.  This architecture is 

expected to realize flexible control of many fine-grained 

operational units by distributed nanoprograms of horizontal type 

under single microprogram of vertical type. It also reduces the 

difficulty of designing applications of reconfigurable hardware 

by replacing a lot of sequence control circuits with 

nanoprograms. By isolating the programming view from the 

detailed implementation view and allowing the flexibility of the 

underlying hardware, the proposed scheme will be much more 

palatable to the application developers than the use of an HDL 

and  logic compiler scheme. 

Keywords—two-level microprogramming; reconfigurable 

computing; parallel computer 

I. INTRODUCTION 

Since microprogramming was invented by M.V. Wilkes in 

1951 as a means for systematically designing computer’s 

control part [1], the technology was utilized by commercially 

available computers to realize a wide variety of hardware 

organizations under the same instruction set architecture and 

keep compatibility of architecture by bridging the gap between 

the instruction set definition and hardware architecture [2]. By 

the use of semiconductor memory as control storage, the 

microprogram became writeable or reloadable and dynamic 

microprogramming attracted our attentions [3], [4]. System 

support functions, such as micro-diagnostics, and application-

oriented functions, such as elementary function evaluation and 

programming language processing, were realized as 

microprograms [2].  The synthesis of microprograms for 

frequently executed instructions’ sequence and their 

optimization were also studied [5], [6]. The term dynamic 

architecture represents the adaptable nature.  The term 

firmware was coined as the intermediate layer between 

software and hardware [7]. Types of micro-instruction set 

were categorized into vertical and horizontal types, depending 

on their degree of encoding – from direct control to highly-

encoded. It affects the complexity of decoding, parallelism, 

and control memory amount [8].  A two-level 

microprogramming scheme was proposed as a combination of 

upper-level vertical micro-instruction and lower-level 

horizontal one [8]. The aim is to save the total control memory 

amount without sacrificing the parallelism of horizontal 

micro-instructions 

   The basic features of micro-instruction set level architecture 

can be summarized as follows: 

 

- A micro-instruction is basically executed in one-machine 

cycle by pipelining micro-instruction fetch and execution.   

- Decoded signals, called micro-order, directly control 

register-level hardware behaviors, such as gate and ALU 

operations, called micro-operations. 

- Single micro-instruction controls not only usual 

arithmetic and memory operations but also sequence of 

micro-instructions in various ways.  Example sequencing 

functions include a branch by using an operation code of 

machine instruction and four-way branch by using two-

kinds of tests. 

- The control signal generation may be changed directly by 

a hardware resource value, such as some counter (called 

residual control), and other field of the same micro-

instruction (called indirect control).   

 

These features affect the later architectural innovations. 

Many of the microprogramming technologies have been well 

inherited both by RISC and CISC architectures [9]. The VLIW 

architecture also inherits the features of horizontal micro-

instructions that control a lot of hardware resources directly in 

parallel [10].  The local and global optimization technologies 

[11], [12], developed for the microprograms, have been 

utilized for the RISC and VLIW compilers. 
The objective of this paper is to review the technologies of 

micro-instruction set level architecture and show the 
possibility of two-level microprogramming scheme coupled 
with multiprocessor architecture for implementing two-level 
controlled reconfigurable architecture. 

The rest of this paper is organized as follows.  Section 2 
reviews the two-level microprogramming scheme and 
describes a two-level microprogrammed multiprocessor 



architecture. It also describes the implementation and 
evaluation of the architecture. Section 3 proposes a new 
parallel architecture with fine-grained reconfiguration 
capability under the two-level  control scheme. Section 4 
concludes the paper. 

II. TWO-LEVEL MICROPROGRAMMED MULTIPROCESSOR 

ARCHITECTURE 

A. Review of two-level microprogramming  

In the two-level microprogramming scheme, the control 

memory is divided into two parts, namely, microprogram 

memory (MPM) and nanoprogram memory (NPM). There are 

two types of relations, as shown in Fig. 1.   

In the type of Fig.1(a), the micro-instructions (μIs) in the 

microprogram memory are narrow and of vertical type. They 

have pointers to nano-instructions (nIs) in the nanoprogram 

memory. They also perform global control of the machine, 

such as sequence control, data transfer at the micro-level and, 

in some cases, literal values to be assigned to specified 

registers. The nano-instructions are wide and of horizontal 

type. They directly control functional units, such as multiple 

ALUs and registers in parallel. This scheme requires less 

control memory when frequently executed short micro-

instructions refer to the same long nano-instruction. Examples 

of this architecture include the Burroughs Interpreter [8] and 

the Motorola MC68020 [13]. 

In the second type of Fig.1(b), the nano-instructions in the 

lower level storage unit interpret micro-instructions, in much 

the same way as ordinary micro-instructions interpret machine 

language instructions.  This scheme allows us to define the 

meaning of upper level micro-instructions by the lower level 

nanoprograms (nPs). The Nanodata QM-1 was an example of 

this type [14]. 

 

B. Two-level microprogrammed multiprocessor architecture 

Adoption of the two-level control structure coupled with 

the multiprocessor parallelism lead us to an attractive 

architecture as shown in Fig. 2. In this architecture a micro-

instruction (μI) in the microprogram memory (MPM) specifies 

a  nanoprogram address and the address is multicast to several  

Fig. 1. Two-level microprogramming scheme. 

tightly coupled multiprocessor units to activate the multi-

nanoprograms.  The microprogram also coordinates the 

execution of activated multi-nanoprograms, controls global 

dataflow between processing units (PUs) and  main  memory 

(MM), and performs sequence control of whole system.  

Within PU, a nano-instruction performs the local control 

of the nano-operations.   They include arithmetic and logical 

operations by ALU, and non-numeric operations by bit 

operation unit and divide and concatenate unit. A small 

amount of high-speed memory is provided as a scratchpad 

memory. PU inputs (or outputs) data from/to micro-level 

through port registers.    

We named this machine MUNAP which stands for MUlti-

NAnoProgram machine [15], [16]. The control scheme is 

expected to have the following effects: 

 

1. Flexibility for meeting a wide range of applications’ 

requirements through two-levels of control; 

2. Utilization of maximum parallelism of intra- and 

inter-multiprocessor units under single microprogram 

control; 

3. Savings in total amount of control storage by having 

nano-instructions that are common to more than one 

microinstcution; 

4. Modularity of hardware units under the distributed 

control function of nanoprograms; and 

5. Closeness between the control and controlled parts by 

distributing control functions to multiprocessors. 

 

   First two items allow a single micro-instruction to be applied 

to any combination of the processing units for each unique 

application of the operation. The processing units may 

perform both SIMD and MIMD operations in a uniform  

 

 
Fig. 2. Two-level microrogrammed multiprocessor. 



manner under the single micro-instruction stream. The third 

through fifth items have advantages over usual single level 

control scheme from the view point of VLSI implementation. 

 

   In order to implement the architecture, we have designed 

micro-instruction and nano-instruction formats. Except for a 

few micro-instructions, such as sequencing one, the micro-

instructions have an operation and operands fields in addition 

to nanoprogram control fields which include the nanoprogram 

start address and the specification of the PUs to be activated. 

In addition to an operation and operands fields, every nano-

instruction has one bit in common, called ENP (End of 

NanoProgram), which indicates the end of activated 

nanoprogram. This means that the activated nanoprograms 

may run arbitrary steps until ENP becomes 1. Thus, the 

nanoprogram in each processing unit acts like Fig 1(a) when 

the ENP of the first nano-instruction is 1; otherwise, it acts 

like Fig.1 (b) under the control of nano-level sequencer in PU. 

 

   The interaction mechanism between the micro- and nano-

levels is shown in Fig. 3. The micro-nano flags (MNFL) are 

placed as an interface and play an important role by sending 

and receiving information between two levels.  It consists of 

the following six kinds of flags: 

 

- Nanohalt (NHLT): the end of nanoprograms of PUs; 

- Microrequest (MREQ): the request from micro-level to 

nanoprograms; 

- Test (TEST): the result of tests by nanoprograms; 

- Nanorequest (NREQ): the request from nanoprograms to 

microprogram; 

- Nanointerrupt (NINT): the interrupt caused by 

nanoprogram execution; and 

- Microinterrupt (MINT): the interrupt caused by 

microprogram execution. 

 

This interaction mechanism may be used for the following 

three operations: (i) activation of nanoprograms from micro-

level and notifying the termination of nanoprograms from  

Fig. 3. Miro-nano interaction mechanism. 

 

Fig. 4. Cascading of four PUs’  functions and its physical implementation. 

nano- to micro-level, (ii) transferring the test results from 

nano- to micro-level, and (iii) requesting from one-level to 

another. These allow the two-levels of control programs to 

interact each other flexibly.  

   We would like to note that micro-nano combined data-

transfer mechanism and the shuffle-exchange network’s data-

exchange functions allow us to reconfigure the cascading of 

multiple-PU operations by ALU and non-numeric units as 

shown in Fig. 4. Fig.4 (a) illustrates the cascading of functions 

f0 through f3 in PU0 through PU3, respectively, and (b) shows 

how the cascading is realized physically by using the shuffle-

exchange network.  Other cascading operations may be 

realized by using the same hardware [16].  

 

C. Implementation and evaluation of the architecrure  

The designed architecture had been implemented by using 

about 3,000 ICs and connecting them by wire wrapping.  The 

supporting software systems include the translator for the two-

level microprogram description language, optimizing loader 
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for compacting and loading the translated two-level 

microprograms, debugger and evaluator [16]. Then, we 

applied the machine to various applications, such as language 

processors for Prolog and Smalltalk-80, three dimensional 

color graphics system, and numerical computations.  

We evaluated the architecture based on these application 

results.  As to the effect of two-level control, we can 

summarize from the following three points. 

First, the usage frequencies of micro- and nano-

instructions show the characteristics of the both levels. At the 

micro-level, the dynamic frequencies of micro-instructions for 

sequence control, data transfer, and MM access are 50-80%, 

20-36%, and 5%, respectively. The highest ratio of sequence 

control micro-instructions indicates the importance of micro-

level sequencing functions in the two-level 

microprogramming scheme. At the nano-level, the dynamic 

frequencies of nano-instuctions for ALU, data transfer 

between the two levels, the nano-level sequence controls, and 

constant generations are 23-50%, 20%, 13%, and 7-18%, 

respectively. The usage frequencies of non-numeric 

operational units vary, depending on applications’ 

characteristics. At the stage of architecture design, we 

expected the nanoprograms would mainly control ALU and 

other functional units and would not  use the nano-level 

sequence control function so much. However, the results show 

that the nano-level sequencing was used to detect the PU 

status and transfer the result to micro-level in order to reflect 

the detected result to micro-level sequence control.  The nano-

level sequencing is also used when long nanoprograms run 

independently.  

Second, the average number of nanoprogram steps, 

activated by one micro-instruction, indicates how long the 

nanoprograms can run independently. The experimental 

results show that the nano-steps for MIMD type processing 

were small (around 1.1 to 1.5), while those for SIMD type 

processing were large (7.7 for FFT and 78.5 for LU 

decomposition).  The reason is that the data in the processing 

units for MIMD processing are mutually dependent and the 

result of other processing units is needed after a few steps of 

nanoprogram execution. In SIMD type processing, the 

processing units are mutually independent. Thus, once 

necessary data are fetched from the main memory to the 

scratchpad memory, the nanoprogram can continue their 

execution for a relatively long time period.  The control is 

returned to micro-level only when accessing the main memory 

or controlling sequences, such as the call/return microprogram 

subroutines. 

Third, the applications clarified that 86% of nanoprogram 

memory was effectively used.  This high ratio was realized by 

optimization of nanoprogram address space compaction [16]. 
These results indicate that the proposed architecture allows 

us to realize flexible but efficient control mechanism for the 
multiprocessors with fine grained parallelism.  

III. Two-Level Control Structure for Fine Grained 

Reconfiguration 

Recently, the reconfigurable fabric for accelerating the 

processing of heavy workloads attracts our attention. For 

example, the Catapult fabric ports a significant fraction of 

Bing’s ranking engine on to a ring structured 8 Field 

Programmable Gate Arrays (FPGAs) to accelerate the 

execution of ranking by macro-pipeline [17]. The Xeon and 

FPGA combined platform has been developed as a 

heterogeneous computing engine [18]. The FPGA accelerator 

is expected to complement CPU cores to meet market needs 

for performance of diverse workloads in the data center. An 

example usage of such architecture is a high frequency trading 

accelerator for achieving the lowest possible latency for 

interpreting market data feeds [19]. An FPGA-based 

accelerator for deep convolution neural networks is another 

example application of reconfigurable architecture [20]. 

     These reconfigurable architectures using FPGAs share 

quite similar objective with dynamically microprogrammable 

machines, described above. The standing position of the both 

approaches is between the hardware implementation by an 

application-specific integrated circuits (ASIC) and the 

software implementation.  The ASIC realizes high 

performance execution. However, it lacks the capability of 

reconfigurability and fast development round to meet various 

applications’ requirements. It is hard for the software 

implementation to meet the performance requirement of 

heavy workloads. Both the reconfigurable architecture and 

microprogrammable machines bridge the gap between these 

two extreme implementations by utilizing register-transfer 

level parallelism. 

   A major challenge of FPGA development is the 

requirement for extensive hand coding using RTL language to 

define many state machines and manual tuning of the 

designed configurations to meet the application’s 

requirements [17]. We need to describe the hardware by using 

a hardware description language (HDL), generate the 

configuration data, and download it to FPGA. We should 

repeat these processes for tuning the design. 

Thus, as a solution to this problem of designing difficulty 

of FPGAs, we would like to propose a new parallel 

reconfigurable architecture that utilizes the two levels of 

microprogram control.  In this architecture, sequence circuit  

design, which may occur at many places on FPGA, can be 

replaced with the description of nanoprogram of horizontal 

type that controls fine-grained operational unit array in 

parallel.  The nanoprogram description and its specification 

from single-stream microprogram may ease the development 

of applications on FPGA devices.  

 

 

 

 

 



Fig. 5. Top view of parallel reconfigurable architecture 

Fig. 5 shows the top view of the proposed architecture. It 

corresponds to the micro-level architecture of MUNAP.  The 

micro-instruction is read from MPM and decoded to generate 

control signals, so called micro-order.  It is sent to multiple 

Flexible Units (FUs) to activate nanoprogram executions.  It 

also controls micro-level data transfers between FUs, memory 

and inter-FU network. Thus, various combinations of FUs’ 

operations can be realized as shown in Fig. 4. 

       Fig. 6 shows the internal organization of the FUs.  It 

receives micro-order from micro-level and determines the 

nanoprogram start address.  The very long nano-instruction of 

horizontal type is decoded to generate control signals, so 

called nano-order. They control the operational unit array and 

other resources of FU. The operational unit array can be 

viewed as an array of fine grained ALUs or non-numeric units  

Fig. 6. Internal organization of FUs.  

 

 

with 4- to 16-bit length or some special functional units, such 

as elementary function evaluation units. Usually, FPGA 

includes many sequence control mechanisms to realize many 

state machines. In our scheme, the sequence of nanoprograms 

replaces these mechanisms for sequencing.  Thus, a complex 

sequence can be realized by nanoprograms systematically as 

proposed by Wilkes [1]. The nanoprogram realizes 

reconfiguration of the operational units and intra-FU network 

so that the architecture may adapt to the applications’ 

requirements.  This reconfiguration process is much like 

rewriting the configuration data of FPGA devices. By 

providing ready-made configuration data and its usage as 

nanoprograms, the user can easily utilize reconfiguration 

capability just by specifying the nanoprogram address from  

the micro-level. 

 

 



 

Fig. 7.   Nanoprogram controlled sub-sorting operation.  

In order to illustrate our image of using the two-level 

microprogram, Fig. 7 shows an example sorting operation 

controlled by the nanoprogram. The operational unit array, 

intra-FU network and register array are controlled by 

nanoinstructions of horizontal type to sort 4 data items in 

REGs. The bit-length of the operation may be flexibly adapted 

to the application’s requirement. The microprogram 

coordinates the nanoprogram controlled sub-sorting operations   

to sort the whole data. 

In summary, the two-level control scheme has advantages 

of 5 items described in section II (b). The proposed two-level 

controlled parallel and reconfigurable architecture share these 

advantages and, further, it has additional advantage for 

reconfigurable architecture by providing multi-nanoprograms 

of horizontal type which replace many complex sequence 

control circuits, necessary for usual FPGA design.  Thus, 

following the Wilkes’ original motivation of providing a 

systematic way to design the control part of a computer, our 

two-level control scheme allows the user to utilize 

reconfigurable, fine-grained parallel processing capability by 

describing micro- and nano-programs.     

 

IV. CONCLUSION  

 
First, we reviewed the key technologies of 

microprogramming. Then, we focused on the utilization of 
two-level microprogramming scheme combined with 
multiprocessor parallelism. Based on our experience by the 
development of the two-level microprogrammed 
multiprocessor machine, called MUNAP, we proposed a new 
two-level controlled, parallel reconfigurable architecture in 
order to ease the development of applications on such 
architecture.  The proposed architecture is expected to realize 
flexible control of many fine-grained operational units by 
distributed nanoprograms under single microprogram stream. 
Further, the architecture will reduce the difficulty of designing 
applications on reconfigurable hardware by replacing a lot of 
sequence control circuits with nanoprograms.  

Note that our proposed architecture is independent of its 
implementation details. It may be realized by using a hard 
integrated circuit or a soft FPGA. In any case, it isolates the 

programming view from the detailed implementation view and, 
at the same time, allows the flexibility of the underlying 
hardware. Thus, our scheme will be much more palatable to 
the application developers than the use of an HDL and logic 
compiler scheme. 
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