
Two-Level Controlled Parallel Reconfigurable

Architecture

Takanobu Baba

Center for Optical Research and Education

Utsunomiya University

Utsunomiya, Japan 321-8585

baba@cc.utsunomiya-u.ac.jp

Kanemitsu Ootsu

Graduate School of Engineering

Utsunomiya University

Utsunomiya, Japan 321-8585

kim@is.utsunomiya-u.ac.jp

Abstract— After reviewing the key technologies of

microprogramming, this paper focuses on the utilization of two-

level microprogramming scheme combined with multiprocessor

parallelism. Based on our experience by the development of the

two-level microprogrammed multiprocessor machine, called

MUNAP, and the increasing importance of reconfigurable

parallel architecture, we propose a new two-level controlled,

parallel reconfigurable architecture. This architecture is

expected to realize flexible control of many fine-grained

operational units by distributed nanoprograms of horizontal type

under single microprogram of vertical type. It also reduces the

difficulty of designing applications of reconfigurable hardware

by replacing a lot of sequence control circuits with

nanoprograms. By isolating the programming view from the

detailed implementation view and allowing the flexibility of the

underlying hardware, the proposed scheme will be much more

palatable to the application developers than the use of an HDL

and logic compiler scheme.

Keywords—two-level microprogramming; reconfigurable

computing; parallel computer

I. INTRODUCTION

Since microprogramming was invented by M.V. Wilkes in

1951 as a means for systematically designing computer’s

control part [1], the technology was utilized by commercially

available computers to realize a wide variety of hardware

organizations under the same instruction set architecture and

keep compatibility of architecture by bridging the gap between

the instruction set definition and hardware architecture [2]. By

the use of semiconductor memory as control storage, the

microprogram became writeable or reloadable and dynamic

microprogramming attracted our attentions [3], [4]. System

support functions, such as micro-diagnostics, and application-

oriented functions, such as elementary function evaluation and

programming language processing, were realized as

microprograms [2]. The synthesis of microprograms for

frequently executed instructions’ sequence and their

optimization were also studied [5], [6]. The term dynamic

architecture represents the adaptable nature. The term

firmware was coined as the intermediate layer between

software and hardware [7]. Types of micro-instruction set

were categorized into vertical and horizontal types, depending

on their degree of encoding – from direct control to highly-

encoded. It affects the complexity of decoding, parallelism,

and control memory amount [8]. A two-level

microprogramming scheme was proposed as a combination of

upper-level vertical micro-instruction and lower-level

horizontal one [8]. The aim is to save the total control memory

amount without sacrificing the parallelism of horizontal

micro-instructions

 The basic features of micro-instruction set level architecture

can be summarized as follows:

- A micro-instruction is basically executed in one-machine

cycle by pipelining micro-instruction fetch and execution.

- Decoded signals, called micro-order, directly control

register-level hardware behaviors, such as gate and ALU

operations, called micro-operations.

- Single micro-instruction controls not only usual

arithmetic and memory operations but also sequence of

micro-instructions in various ways. Example sequencing

functions include a branch by using an operation code of

machine instruction and four-way branch by using two-

kinds of tests.

- The control signal generation may be changed directly by

a hardware resource value, such as some counter (called

residual control), and other field of the same micro-

instruction (called indirect control).

These features affect the later architectural innovations.

Many of the microprogramming technologies have been well

inherited both by RISC and CISC architectures [9]. The VLIW

architecture also inherits the features of horizontal micro-

instructions that control a lot of hardware resources directly in

parallel [10]. The local and global optimization technologies

[11], [12], developed for the microprograms, have been

utilized for the RISC and VLIW compilers.
The objective of this paper is to review the technologies of

micro-instruction set level architecture and show the
possibility of two-level microprogramming scheme coupled
with multiprocessor architecture for implementing two-level
controlled reconfigurable architecture.

The rest of this paper is organized as follows. Section 2
reviews the two-level microprogramming scheme and
describes a two-level microprogrammed multiprocessor

architecture. It also describes the implementation and
evaluation of the architecture. Section 3 proposes a new
parallel architecture with fine-grained reconfiguration
capability under the two-level control scheme. Section 4
concludes the paper.

II. TWO-LEVEL MICROPROGRAMMED MULTIPROCESSOR

ARCHITECTURE

A. Review of two-level microprogramming

In the two-level microprogramming scheme, the control

memory is divided into two parts, namely, microprogram

memory (MPM) and nanoprogram memory (NPM). There are

two types of relations, as shown in Fig. 1.

In the type of Fig.1(a), the micro-instructions (μIs) in the

microprogram memory are narrow and of vertical type. They

have pointers to nano-instructions (nIs) in the nanoprogram

memory. They also perform global control of the machine,

such as sequence control, data transfer at the micro-level and,

in some cases, literal values to be assigned to specified

registers. The nano-instructions are wide and of horizontal

type. They directly control functional units, such as multiple

ALUs and registers in parallel. This scheme requires less

control memory when frequently executed short micro-

instructions refer to the same long nano-instruction. Examples

of this architecture include the Burroughs Interpreter [8] and

the Motorola MC68020 [13].

In the second type of Fig.1(b), the nano-instructions in the

lower level storage unit interpret micro-instructions, in much

the same way as ordinary micro-instructions interpret machine

language instructions. This scheme allows us to define the

meaning of upper level micro-instructions by the lower level

nanoprograms (nPs). The Nanodata QM-1 was an example of

this type [14].

B. Two-level microprogrammed multiprocessor architecture

Adoption of the two-level control structure coupled with

the multiprocessor parallelism lead us to an attractive

architecture as shown in Fig. 2. In this architecture a micro-

instruction (μI) in the microprogram memory (MPM) specifies

a nanoprogram address and the address is multicast to several

Fig. 1. Two-level microprogramming scheme.

tightly coupled multiprocessor units to activate the multi-

nanoprograms. The microprogram also coordinates the

execution of activated multi-nanoprograms, controls global

dataflow between processing units (PUs) and main memory

(MM), and performs sequence control of whole system.

Within PU, a nano-instruction performs the local control

of the nano-operations. They include arithmetic and logical

operations by ALU, and non-numeric operations by bit

operation unit and divide and concatenate unit. A small

amount of high-speed memory is provided as a scratchpad

memory. PU inputs (or outputs) data from/to micro-level

through port registers.

We named this machine MUNAP which stands for MUlti-

NAnoProgram machine [15], [16]. The control scheme is

expected to have the following effects:

1. Flexibility for meeting a wide range of applications’

requirements through two-levels of control;

2. Utilization of maximum parallelism of intra- and

inter-multiprocessor units under single microprogram

control;

3. Savings in total amount of control storage by having

nano-instructions that are common to more than one

microinstcution;

4. Modularity of hardware units under the distributed

control function of nanoprograms; and

5. Closeness between the control and controlled parts by

distributing control functions to multiprocessors.

 First two items allow a single micro-instruction to be applied

to any combination of the processing units for each unique

application of the operation. The processing units may

perform both SIMD and MIMD operations in a uniform

Fig. 2. Two-level microrogrammed multiprocessor.

manner under the single micro-instruction stream. The third

through fifth items have advantages over usual single level

control scheme from the view point of VLSI implementation.

 In order to implement the architecture, we have designed

micro-instruction and nano-instruction formats. Except for a

few micro-instructions, such as sequencing one, the micro-

instructions have an operation and operands fields in addition

to nanoprogram control fields which include the nanoprogram

start address and the specification of the PUs to be activated.

In addition to an operation and operands fields, every nano-

instruction has one bit in common, called ENP (End of

NanoProgram), which indicates the end of activated

nanoprogram. This means that the activated nanoprograms

may run arbitrary steps until ENP becomes 1. Thus, the

nanoprogram in each processing unit acts like Fig 1(a) when

the ENP of the first nano-instruction is 1; otherwise, it acts

like Fig.1 (b) under the control of nano-level sequencer in PU.

 The interaction mechanism between the micro- and nano-

levels is shown in Fig. 3. The micro-nano flags (MNFL) are

placed as an interface and play an important role by sending

and receiving information between two levels. It consists of

the following six kinds of flags:

- Nanohalt (NHLT): the end of nanoprograms of PUs;

- Microrequest (MREQ): the request from micro-level to

nanoprograms;

- Test (TEST): the result of tests by nanoprograms;

- Nanorequest (NREQ): the request from nanoprograms to

microprogram;

- Nanointerrupt (NINT): the interrupt caused by

nanoprogram execution; and

- Microinterrupt (MINT): the interrupt caused by

microprogram execution.

This interaction mechanism may be used for the following

three operations: (i) activation of nanoprograms from micro-

level and notifying the termination of nanoprograms from

Fig. 3. Miro-nano interaction mechanism.

Fig. 4. Cascading of four PUs’ functions and its physical implementation.

nano- to micro-level, (ii) transferring the test results from

nano- to micro-level, and (iii) requesting from one-level to

another. These allow the two-levels of control programs to

interact each other flexibly.

 We would like to note that micro-nano combined data-

transfer mechanism and the shuffle-exchange network’s data-

exchange functions allow us to reconfigure the cascading of

multiple-PU operations by ALU and non-numeric units as

shown in Fig. 4. Fig.4 (a) illustrates the cascading of functions

f0 through f3 in PU0 through PU3, respectively, and (b) shows

how the cascading is realized physically by using the shuffle-

exchange network. Other cascading operations may be

realized by using the same hardware [16].

C. Implementation and evaluation of the architecrure

The designed architecture had been implemented by using

about 3,000 ICs and connecting them by wire wrapping. The

supporting software systems include the translator for the two-

level microprogram description language, optimizing loader

MPM

Nano-
address

Micro
Sequencer

activate

Microlevel
modules

(Network, MM) PU

NHLT MREQ TEST NREQ NINT MINT

NPM

Micro-Nano Flags

MASK

Micro

Nano

for compacting and loading the translated two-level

microprograms, debugger and evaluator [16]. Then, we

applied the machine to various applications, such as language

processors for Prolog and Smalltalk-80, three dimensional

color graphics system, and numerical computations.

We evaluated the architecture based on these application

results. As to the effect of two-level control, we can

summarize from the following three points.

First, the usage frequencies of micro- and nano-

instructions show the characteristics of the both levels. At the

micro-level, the dynamic frequencies of micro-instructions for

sequence control, data transfer, and MM access are 50-80%,

20-36%, and 5%, respectively. The highest ratio of sequence

control micro-instructions indicates the importance of micro-

level sequencing functions in the two-level

microprogramming scheme. At the nano-level, the dynamic

frequencies of nano-instuctions for ALU, data transfer

between the two levels, the nano-level sequence controls, and

constant generations are 23-50%, 20%, 13%, and 7-18%,

respectively. The usage frequencies of non-numeric

operational units vary, depending on applications’

characteristics. At the stage of architecture design, we

expected the nanoprograms would mainly control ALU and

other functional units and would not use the nano-level

sequence control function so much. However, the results show

that the nano-level sequencing was used to detect the PU

status and transfer the result to micro-level in order to reflect

the detected result to micro-level sequence control. The nano-

level sequencing is also used when long nanoprograms run

independently.

Second, the average number of nanoprogram steps,

activated by one micro-instruction, indicates how long the

nanoprograms can run independently. The experimental

results show that the nano-steps for MIMD type processing

were small (around 1.1 to 1.5), while those for SIMD type

processing were large (7.7 for FFT and 78.5 for LU

decomposition). The reason is that the data in the processing

units for MIMD processing are mutually dependent and the

result of other processing units is needed after a few steps of

nanoprogram execution. In SIMD type processing, the

processing units are mutually independent. Thus, once

necessary data are fetched from the main memory to the

scratchpad memory, the nanoprogram can continue their

execution for a relatively long time period. The control is

returned to micro-level only when accessing the main memory

or controlling sequences, such as the call/return microprogram

subroutines.

Third, the applications clarified that 86% of nanoprogram

memory was effectively used. This high ratio was realized by

optimization of nanoprogram address space compaction [16].
These results indicate that the proposed architecture allows

us to realize flexible but efficient control mechanism for the
multiprocessors with fine grained parallelism.

III. Two-Level Control Structure for Fine Grained

Reconfiguration

Recently, the reconfigurable fabric for accelerating the

processing of heavy workloads attracts our attention. For

example, the Catapult fabric ports a significant fraction of

Bing’s ranking engine on to a ring structured 8 Field

Programmable Gate Arrays (FPGAs) to accelerate the

execution of ranking by macro-pipeline [17]. The Xeon and

FPGA combined platform has been developed as a

heterogeneous computing engine [18]. The FPGA accelerator

is expected to complement CPU cores to meet market needs

for performance of diverse workloads in the data center. An

example usage of such architecture is a high frequency trading

accelerator for achieving the lowest possible latency for

interpreting market data feeds [19]. An FPGA-based

accelerator for deep convolution neural networks is another

example application of reconfigurable architecture [20].

 These reconfigurable architectures using FPGAs share

quite similar objective with dynamically microprogrammable

machines, described above. The standing position of the both

approaches is between the hardware implementation by an

application-specific integrated circuits (ASIC) and the

software implementation. The ASIC realizes high

performance execution. However, it lacks the capability of

reconfigurability and fast development round to meet various

applications’ requirements. It is hard for the software

implementation to meet the performance requirement of

heavy workloads. Both the reconfigurable architecture and

microprogrammable machines bridge the gap between these

two extreme implementations by utilizing register-transfer

level parallelism.

 A major challenge of FPGA development is the

requirement for extensive hand coding using RTL language to

define many state machines and manual tuning of the

designed configurations to meet the application’s

requirements [17]. We need to describe the hardware by using

a hardware description language (HDL), generate the

configuration data, and download it to FPGA. We should

repeat these processes for tuning the design.

Thus, as a solution to this problem of designing difficulty

of FPGAs, we would like to propose a new parallel

reconfigurable architecture that utilizes the two levels of

microprogram control. In this architecture, sequence circuit

design, which may occur at many places on FPGA, can be

replaced with the description of nanoprogram of horizontal

type that controls fine-grained operational unit array in

parallel. The nanoprogram description and its specification

from single-stream microprogram may ease the development

of applications on FPGA devices.

Fig. 5. Top view of parallel reconfigurable architecture

Fig. 5 shows the top view of the proposed architecture. It

corresponds to the micro-level architecture of MUNAP. The

micro-instruction is read from MPM and decoded to generate

control signals, so called micro-order. It is sent to multiple

Flexible Units (FUs) to activate nanoprogram executions. It

also controls micro-level data transfers between FUs, memory

and inter-FU network. Thus, various combinations of FUs’

operations can be realized as shown in Fig. 4.

 Fig. 6 shows the internal organization of the FUs. It

receives micro-order from micro-level and determines the

nanoprogram start address. The very long nano-instruction of

horizontal type is decoded to generate control signals, so

called nano-order. They control the operational unit array and

other resources of FU. The operational unit array can be

viewed as an array of fine grained ALUs or non-numeric units

Fig. 6. Internal organization of FUs.

with 4- to 16-bit length or some special functional units, such

as elementary function evaluation units. Usually, FPGA

includes many sequence control mechanisms to realize many

state machines. In our scheme, the sequence of nanoprograms

replaces these mechanisms for sequencing. Thus, a complex

sequence can be realized by nanoprograms systematically as

proposed by Wilkes [1]. The nanoprogram realizes

reconfiguration of the operational units and intra-FU network

so that the architecture may adapt to the applications’

requirements. This reconfiguration process is much like

rewriting the configuration data of FPGA devices. By

providing ready-made configuration data and its usage as

nanoprograms, the user can easily utilize reconfiguration

capability just by specifying the nanoprogram address from

the micro-level.

Fig. 7. Nanoprogram controlled sub-sorting operation.

In order to illustrate our image of using the two-level

microprogram, Fig. 7 shows an example sorting operation

controlled by the nanoprogram. The operational unit array,

intra-FU network and register array are controlled by

nanoinstructions of horizontal type to sort 4 data items in

REGs. The bit-length of the operation may be flexibly adapted

to the application’s requirement. The microprogram

coordinates the nanoprogram controlled sub-sorting operations

to sort the whole data.

In summary, the two-level control scheme has advantages

of 5 items described in section II (b). The proposed two-level

controlled parallel and reconfigurable architecture share these

advantages and, further, it has additional advantage for

reconfigurable architecture by providing multi-nanoprograms

of horizontal type which replace many complex sequence

control circuits, necessary for usual FPGA design. Thus,

following the Wilkes’ original motivation of providing a

systematic way to design the control part of a computer, our

two-level control scheme allows the user to utilize

reconfigurable, fine-grained parallel processing capability by

describing micro- and nano-programs.

IV. CONCLUSION

First, we reviewed the key technologies of

microprogramming. Then, we focused on the utilization of
two-level microprogramming scheme combined with
multiprocessor parallelism. Based on our experience by the
development of the two-level microprogrammed
multiprocessor machine, called MUNAP, we proposed a new
two-level controlled, parallel reconfigurable architecture in
order to ease the development of applications on such
architecture. The proposed architecture is expected to realize
flexible control of many fine-grained operational units by
distributed nanoprograms under single microprogram stream.
Further, the architecture will reduce the difficulty of designing
applications on reconfigurable hardware by replacing a lot of
sequence control circuits with nanoprograms.

Note that our proposed architecture is independent of its
implementation details. It may be realized by using a hard
integrated circuit or a soft FPGA. In any case, it isolates the

programming view from the detailed implementation view and,
at the same time, allows the flexibility of the underlying
hardware. Thus, our scheme will be much more palatable to
the application developers than the use of an HDL and logic
compiler scheme.

ACKNOWLEDGMENT

We would like to thank the reviewers for their helpful

comments. This work was supported by JSPS KAKENHI

Grant Numbers 25330055 and 15K00068.

REFERENCES

[1] M.V. Wilkes, “The Best Way to Design an Automatic Calculating
Machine,” Report of Manchester University Computer Inaugural
Conference, pp.16-18, 1951.

[2] S.S. Husson: Microprogramming: Principles and Practices , Englewood
Cliffs, N.J., Prentice-Hall, 1970.

[3] A.B. Tucker and M.J. Flynn, “Dynaamic Microprogramming : Processor
Organization and Programming,” Comm. ACM, Vol.14, No.4, 240-250,
1971.

[4] R.W. Cook and M.J. Flynn, “System Design of a Dynamic
Microprocessor,” IEEE Trans. Computers, Vol.C-19, No.3, pp.213-222,
1970.

[5] A.M. Abd-Alla, D.C. Karlgaard, “Heauristic Synthesis of
Microprogrammed Computer Architecture,” IEEE Trans. Computers,
Vol.C-23, No.8, pp.802-807, 1974.

[6] T.G. Rauscher and A.K. Agrawala, “Dynamic Problem-Oriented
Redefinition of Computer Architecture via Microprogramming,” IEEE
Trans. Computers, Vol.C-27, No.11, pp.1006-1014 , 1978.

[7] A. Opler, “Fourth Generation Software,” Datamation, Vol.13, No.1,
pp.22-24, 1967.

[8] A.K. Aglawala, T.G. Rauscher, Foundations of Microprogramming,
New York:Academic, 1976.

[9] D. A. Patterson, D. R. Ditzel, “The case for the reduced instruction
set computer,” ACM SIGARCH Computer Architecture News. 8 (6): 25
–33, 1980.

[10] J.A. Fisher, “Very Long Instruction Word architectures and the ELI-
512,” Proc. of the 10th International Symposium on Computer
Architecturepp. 140–150, 1983.

[11] T. Agerwala, “Microprogram Optimization: A Survey,” IEEE Trans.
Computers, Vol.C-25, pp.962-973, 1976.

[12] T. Baba and H. Hagiwara, “The MPG System: A Machine-Independent
Efficient Microprogram Generator, IEEE Trans. On Computers, Vol.C-
30, No.6, pp.373-395, 1981.

[13] D. MacGregor, D. Mothersole, and B. Moyer, “The Motorola
MC68020,” IEEE Micro, Vol.4, No.4, pp.101-118, 1984.

[14] R.F. Rosin, G. Frieder, and R.H. Echhouse, “An Environment for
Research in Microprogramming and Emulation,” Comm. ACM, Vol.15,
No.8, pp.748-760, 1972.

[15] T. Baba, K. Ishikawa, and K. Okuda, “A Two-Level Microprogrammed
Multiprocessor Computer with Non-numeric Functions,” IEEE Trans.
on Computers, Vol.C-31, No.12, pp.1142-1156, 1982.

[16] T. Baba, Microprogrammable Parallel Computer –MUNAP and Its
Applications-, The MIT Press, p.290 , 1987.

[17] A. Putnam, et al., “A Reconfigurable Fabric for Accelerating Large-
Scale Datacenter Services,” ISCA2014, pp.13-24, 2014.

[18] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
FPGA-based Accelerator Design for Deep Convolutional Neural
Networks,” FPGA'15, pp.161-170, 2015.

[19] B. Leber, B. Geib, and H. Litz, “High Frequency Trading
Acceleration Using FPGAs,” FPL'11, pp.317-322, 2011.

[20] PK Gupta, “Xeon+FPGA Platform for the Data Center,” ISCA2015.
https://www.ece.cmu.edu/~calcm/carl/lib/exe/fetch.php?media=carl15-
gupta.pdf

https://www.ece.cmu.edu/~calcm/carl/lib/exe/fetch.php?media=carl15-gupta.pdf
https://www.ece.cmu.edu/~calcm/carl/lib/exe/fetch.php?media=carl15-gupta.pdf

